156 research outputs found
Intégration des données de sismique 4D dans les modèles de réservoir (recalage d'images fondé sur l'élasticité non linéraire)
Dans une première partie, nous proposons une méthodologie innovante pour la comparaison d'images en ingénierie de réservoir. L'objectif est de pouvoir comparer des cubes sismiques obtenus par simulation avec ceux observés sur un champ pétrolier, dans le but de construire un modèle représentatif de la réalité. Nous développons une formulation fondée sur du filtrage, de la classification statistique et de la segmentation d'images. Ses performances sont mises en avant sur des cas réalistes. Dans une seconde partie, nous nous intéressons aux méthodes de recalage d'images utilisées en imagerie médicale pour mettre en correspondance des images. Nous introduisons deux nouveaux modèles de recalage fondés sur l'élasticité non linéaire, où les formes sont appréhendées comme des matériaux de type Saint Venant-Kirchhoff et Ciarlet-Geymonat. Nous justifions théoriquement l'existence de solutions ainsi que la résolution numérique. Le potentiel de ces méthodes est illustré sur des images médicales.In a first part, we propose an innovative methodology for image matching in the context of reservoir simulation. In order to build a model consistent with data collected on the field, we need to evaluate the error between seismic cubes obtained by simulation and seismic cubes acquired in the oil field. Using image processing tools, we develop a new formulation of the error. The application of this new formulation on synthetic reservoir cases demonstrates its efficiency. In a second part, we address the issue of designing two theoretically well-motivated registration models capable of handling large deformations since they are based on nonlinear elasticity. The shape to be matched are viewed as Ciarlet-Geymonat materials for the first model and as Saint-Venant Kirchhoff materials for the second one. We investigate the efficiency of the proposed matching model for the registration of mouse brain gene expression data to a neuroanatomical mouse atlas.ROUEN-INSA Madrillet (765752301) / SudocSudocFranceF
The NAD+-Dependent SIRT1 Deacetylase Translates a Metabolic Switch into Regulatory Epigenetics in Skeletal Muscle Stem Cells
SummaryStem cells undergo a shift in metabolic substrate utilization during specification and/or differentiation, a process that has been termed metabolic reprogramming. Here, we report that during the transition from quiescence to proliferation, skeletal muscle stem cells experience a metabolic switch from fatty acid oxidation to glycolysis. This reprogramming of cellular metabolism decreases intracellular NAD+ levels and the activity of the histone deacetylase SIRT1, leading to elevated H4K16 acetylation and activation of muscle gene transcription. Selective genetic ablation of the SIRT1 deacetylase domain in skeletal muscle results in increased H4K16 acetylation and deregulated activation of the myogenic program in SCs. Moreover, mice with muscle-specific inactivation of the SIRT1 deacetylase domain display reduced myofiber size, impaired muscle regeneration, and derepression of muscle developmental genes. Overall, these findings reveal how metabolic cues can be mechanistically translated into epigenetic modifications that regulate skeletal muscle stem cell biology
Effects of Oral Glucosamine Hydrochloride Administration on Plasma Free Amino Acid Concentrations in Dogs
We examined the effects of oral glucosamine hydrochloride (GlcN), N-acetyl-d-glucosamine (GlcNAc) and d-glucose (Glc) administration on plasma total free amino acid (PFAA) concentrations in dogs. The PFAA concentrations increased in the control group and the GlcNAc group at one hour after feeding, and each amino acid concentration increased. On the other hand, in the GlcN group and the Glc group PFAA concentrations decreased at one hour after feeding. A significant decrease in amino acid concentration was observed for glutamate, glycine and alanine. Our results suggest the existence of differences in PFAA dynamics after oral administration of GlcN and GlcNAc in dogs
Regulation of expression of Na+,K+-ATPase in androgen-dependent and androgen-independent prostate cancer
The β1-subunit of Na+,K+-ATPase was isolated and identified as an androgen down-regulated gene. Expression was observed at high levels in androgen-independent as compared to androgen-dependent (responsive) human prostate cancer cell lines and xenografts when grown in the presence of androgens. Down-regulation of the β1-subunit was initiated at concentrations between 0.01 nM and 0.03 nM of the synthetic androgen R1881 after relatively long incubation times (> 24 h). Using polyclonal antibodies, the concentration of β1-subunit protein, but not of the α1-subunit protein, was markedly reduced in androgen-dependent human prostate cancer cells (LNCaP-FGC) cultured in the presence of androgens. In line with these observations it was found that the protein expression of total Na+,K+-ATPase in the membrane (measured by 3H-ouabain binding) was also markedly decreased. The main function of Na+,K+-ATPase is to maintain sodium and potassium homeostasis in animal cells. The resulting electrochemical gradient is facilitative for transport of several compounds over the cell membrane (for example cisplatin, a chemotherapeutic agent experimentally used in the treatment of hormone-refractory prostate cancer). Here we observed that a ouabain-induced decrease of Na+,K+-ATPase activity in LNCaP-FGC cells results in reduced sensitivity of these cells to cisplatin-treatment. Surprisingly, androgen-induced decrease of Na+,K+-ATPase expression, did not result in significant protection against the chemotherapeutic agent. © 1999 Cancer Research Campaig
Mesenchymal Stem Cell Therapy Regenerates the Native Bone-Tendon Junction after Surgical Repair in a Degenerative Rat Model
BACKGROUND: The enthesis, which attaches the tendon to the bone, naturally disappears with aging, thus limiting joint mobility. Surgery is frequently needed but the clinical outcome is often poor due to the decreased natural healing capacity of the elderly. This study explored the benefits of a treatment based on injecting chondrocyte and mesenchymal stem cells (MSC) in a new rat model of degenerative enthesis repair. METHODOLOGY: The Achilles' tendon was cut and the enthesis destroyed. The damage was repaired by classical surgery without cell injection (group G1, n = 52) and with chondrocyte (group G2, n = 51) or MSC injection (group G3, n = 39). The healing rate was determined macroscopically 15, 30 and 45 days later. The production and organization of a new enthesis was assessed by histological scoring of collagen II immunostaining, glycoaminoglycan production and the presence of columnar chondrocytes. The biomechanical load required to rupture the bone-tendon junction was determined. PRINCIPAL FINDINGS: The spontaneous healing rate in the G1 control group was 40%, close to those observed in humans. Cell injection significantly improved healing (69%, p = 0.0028 for G2 and p = 0.006 for G3) and the load-to-failure after 45 days (p<0.05) over controls. A new enthesis was clearly produced in cell-injected G2 and G3 rats, but not in the controls. Only the MSC-injected G3 rats had an organized enthesis with columnar chondrocytes as in a native enthesis 45 days after surgery. CONCLUSIONS: Cell therapy is an efficient procedure for reconstructing degenerative entheses. MSC treatment produced better organ regeneration than chondrocyte treatment. The morphological and biomechanical properties were similar to those of a native enthesis
In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale
A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms
ER Stress Negatively Modulates the Expression of the miR-199a/214 Cluster to Regulates Tumor Survival and Progression in Human Hepatocellular Cancer
Background: Recent studies have emphasized causative links between microRNAs (miRNAs) deregulation and tumor development. In hepatocellular carcinoma (HCC), more and more miRNAs were identified as diagnostic and prognostic cancer biomarkers, as well as additional therapeutic tools. This study aimed to investigate the functional significance and regulatory mechanism of the miR-199a2/214 cluster in HCC progression. Methods and Findings: In this study, we showed that miR-214, as well as miR-199a-3p and miR-199a-5p levels were significantly reduced in the majority of examined 23 HCC tissues and HepG2 and SMMC-7721 cell lines, compared with their nontumor counterparts. To further explore the role of miR-214 in hepatocarcinogenesis, we disclosed that the ER stressinduced pro-survival factor XBP-1 is a target of miR-214 by using western blot assay and luciferase reporter assay. Reexpression of miR-214 in HCC cell lines (HepG2 and SMMC-7721) inhibited proliferation and induced apoptosis. Furthermore, ectopic expression of miR-214 dramatically suppressed the ability of HCC cells to form colonies in vitro and to develop tumors in a subcutaneous xenotransplantation model of the BALB/c athymic nude mice. Moreover, reintroduction of XBP-1s attenuated miR-214-mediated suppression of HCC cells proliferation, colony and tumor formation. To further understand the mechanism of the miR-199a/214 cluster down-expression in HCC, we found that thapsigargin (TG) and tunicamycin (TM) or hypoxia-induced unfolded protein response (UPR) suppresses the expression of the miR-199a/21
Distribution of glucocorticoid receptors and 11 beta-hydroxysteroid dehydrogenase isoforms in the rat inner ear.
11β-hydroxysteroid dehydrogenase (11β-HSD) is an enzyme complex responsible for the conversion of hormonally active cortisol to inactive cortisone, and two isoforms of the enzyme (11β-HSD1 and 11β-HSD2) have been cloned and characterized. An immunohistochemical study was performed to determine the precise distribution of glucocorticoid receptors (GRs) and the isoforms of 11β-HSD in the rat (postnatal day 1, 4, 10, and adult). Immunoreactivity of GRs was detected in the stria vascularis (SV), the outer hair cells (OHCs), the inner hair cells (IHCs), the spiral ligament (SLig), the spiral limbus (SLib), the spiral ganglion cells (SGCs), Reissner\u27s membrane (RM), the cochlear nerve (CN), the vestibular hair cells (VHCs), the dark cells (DCs), and the vestibular nerve (VN) in the rats. Immunostaining of 11β-HSD1 was observed in almost all the tissues in the cochlea and the vestibule except SLig, SLib, SGCs, CN, VHCs, and VN during all developmental stages, whereas, immunoreactivity of 11β-HSD2 was not detected in any of the inner ear tissues. A polymerase chain reaction (PCR) study was also performed on GRs, 11β-HSD1, and 11β-HSD2 in the OC, SV and vestibule of the postnatal rats, and revealed that mRNAs were detected in all those and tissues in all the developmental days of postnatal days 1, 4, and 10. This data indicates that expression of GRs and 11β-HSD isoforms in the inner ear is tissue and age-specific, and that different local steroid regulation by GRs and the isoforms of 11β-HSD is present in each part of the inner ear
New Formulation of the Objective Function for Better Incorporation of 4D Seismic Data into Reservoir : Models and Image Registration Based on Nonlinear Elasticity
Dans une première partie, nous proposons une méthodologie innovante pour la comparaison d'images en ingénierie de réservoir. L'objectif est de pouvoir comparer des cubes sismiques obtenus par simulation avec ceux observés sur un champ pétrolier, dans le but de construire un modèle représentatif de la réalité. Nous développons une formulation fondée sur du filtrage, de la classification statistique et de la segmentation d'images. Ses performances sont mises en avant sur des cas réalistes. Dans une seconde partie, nous nous intéressons aux méthodes de recalage d'images utilisées en imagerie médicale pour mettre en correspondance des images. Nous introduisons deux nouveaux modèles de recalage fondés sur l'élasticité non linéaire, où les formes sont appréhendées comme des matériaux de type Saint Venant-Kirchhoff et Ciarlet-Geymonat. Nous justifions théoriquement l'existence de solutions ainsi que la résolution numérique. Le potentiel de ces méthodes est illustré sur des images médicales.In a first part, we propose an innovative methodology for image matching in the context of reservoir simulation. In order to build a model consistent with data collected on the field, we need to evaluate the error between seismic cubes obtained by simulation and seismic cubes acquired in the oil field. Using image processing tools, we develop a new formulation of the error. The application of this new formulation on synthetic reservoir cases demonstrates its efficiency. In a second part, we address the issue of designing two theoretically well-motivated registration models capable of handling large deformations since they are based on nonlinear elasticity. The shape to be matched are viewed as Ciarlet-Geymonat materials for the first model and as Saint-Venant Kirchhoff materials for the second one. We investigate the efficiency of the proposed matching model for the registration of mouse brain gene expression data to a neuroanatomical mouse atlas
- …