369 research outputs found

    Mie plasmons: modes volumes, quality factors and coupling strengths (Purcell factor) to a dipolar emitter

    Get PDF
    Using either quasi-static approximation or exact Mie expansion, we characterize the localized surface plasmons supported by a metallic spherical nanoparticle. We estimate the quality factor QnQ_n and define the effective volume VnV_n of the nthn^{th} mode in a such a way that coupling strength with a neighbouring dipolar emitter is proportional to the ratio Qn/VnQ_n/V_n (Purcell factor). The role of Joule losses, far-field scattering and mode confinement in the coupling mechanism are introduced and discussed with simple physical understanding, with particular attention paid to energy conservation.Comment: (in press) International Journal of Optics (2011

    Purcell factor for point-like dipolar emitter coupling to 2D-plasmonic waveguides

    Full text link
    We theoretically investigate the spontaneous emission of a point--like dipolar emitter located near a two--dimensional (2D) plasmonic waveguide of arbitrary form. We invoke an explicite link with the density of modes of the waveguide describing the electromagnetic channels into which the emitter can couple. We obtain a closed form expression for the coupling to propagative plasmon, extending thus the Purcell factor to plasmonic configurations. Radiative and non-radiative contributions to the spontaneous emission are also discussed in details

    Impact assessment of design guidelines in the conceptual development of aircraft product architectures

    Get PDF
    The optimization of the assembly phase, in complex products, is a challenging phase and it need to be handled in the early phase of product development (i.e., conceptual design). Several methods have been developed to assess the assemblability of product at the conceptual design phase, however, the most critical aspect concerns the possibility to derive design guidelines starting from the results of assemblability analysis. In this context, the present work aims at defining a methodology able to retrieve design for assembly and installation guidelines starting from the analysis of a given product architecture at the conceptual design phase (loop-back of the design for assembly method). The developed method makes use of matrices and vectors to provide a list of design actions that affect the product assemblability including a ranking of their impacts on the final design. The methodology was used to retrieve and select design guidelines in the context of aircraft manufacturing. The case study (cabin equipping of commercial aircraft) provides interesting results in the identification and implementation of design guidelines to improve the aircraft architecture at the conceptual level

    Impact assessment of design guidelines in the conceptual development of aircraft product architectures

    Get PDF
    Abstract The optimization of the assembly phase, in complex products, is a challenging phase and it need to be handled in the early phase of product development (i.e., conceptual design). Several methods have been developed to assess the assemblability of product at the conceptual design phase, however, the most critical aspect concerns the possibility to derive design guidelines starting from the results of assemblability analysis. In this context, the present work aims at defining a methodology able to retrieve design for assembly and installation guidelines starting from the analysis of a given product architecture at the conceptual design phase (loop-back of the design for assembly method). The developed method makes use of matrices and vectors to provide a list of design actions that affect the product assemblability including a ranking of their impacts on the final design. The methodology was used to retrieve and select design guidelines in the context of aircraft manufacturing. The case study (cabin equipping of commercial aircraft) provides interesting results in the identification and implementation of design guidelines to improve the aircraft architecture at the conceptual level

    Conceptual design for assembly in aerospace industry: Sensitivity analysis of mathematical framework and design parameters

    Get PDF
    One of the most challenging activity in the engineering design process is the definition of a framework (model and parameters) for the characterization of specific processes such as installation and assembly. Aircraft system architectures are complex structures used to understand relation among elements (modules) inside an aircraft and its evaluation is one of the first activity since the conceptual design. The assessment of aircraft architectures, from the assembly perspective, requires parameter identification as well as the definition of the overall analysis framework (i.e., mathematical models, equations). The paper aims at the analysis of a mathematical framework (structure, equations and parameters) developed to assess the fit for assembly performances of aircraft system architectures by the mean of sensitivity analysis (One-Factor-At-Time method). The sensitivity analysis was performed on a complex engineering framework, i.e. the Conceptual Design for Assembly (CDfA) methodology, which is characterized by level, domains and attributes (parameters). A commercial aircraft cabin system was used as a case study to understand the use of different mathematical operators as well as the way to cluster attributes

    High electrode activity of nanostructured, columnar ceria films for solid oxide fuel cells

    Get PDF
    Highly porous oxide structures are of significant importance for a wide variety of applications in fuel cells, chemical sensors, and catalysis, due to their high surface-to-volume ratio, gas permeability, and possible unique chemical or catalytic properties. Here we fabricated and characterized Sm_(0.2)Ce_(0.8)O_(1.9−δ) films with highly porous and vertically oriented morphology as a high performance solid oxide fuel cell anode as well as a model system for exploring the impact of electrode architecture on the electrochemical reaction impedance for hydrogen oxidation. Films are grown on single crystal YSZ substrates by means of pulsed laser deposition. Resulting structures are examined by SEM and BET, and are robust up to post-deposition processing temperatures as high as 900 °C. Electrochemical properties are investigated by impedance spectroscopy under H_2–H_2O–Ar atmospheres in the temperature regime 450–650 °C. Quantitative connections between architecture and reaction impedance and the role of ceria nanostructuring for achieving enhanced electrode activity are presented. At 650 °C, _pH_2O = 0.02 atm, and _pH_2 = 0.98 atm, the interfacial reaction resistance attains an unprecedented value of 0.21 to 0.23 Ω cm^2 for porous films 4.40 μm in thickness

    CONCEPTUAL DESIGN FOR ASSEMBLY IN AEROSPACE INDUSTRY: SENSITIVITY ANALYSIS OF MATHEMATICAL FRAMEWORK AND DESIGN PARAMETERS

    Get PDF
    AbstractOne of the most challenging activity in the engineering design process is the definition of a framework (model and parameters) for the characterization of specific processes such as installation and assembly. Aircraft system architectures are complex structures used to understand relation among elements (modules) inside an aircraft and its evaluation is one of the first activity since the conceptual design. The assessment of aircraft architectures, from the assembly perspective, requires parameter identification as well as the definition of the overall analysis framework (i.e., mathematical models, equations).The paper aims at the analysis of a mathematical framework (structure, equations and parameters) developed to assess the fit for assembly performances of aircraft system architectures by the mean of sensitivity analysis (One-Factor-At-Time method). The sensitivity analysis was performed on a complex engineering framework, i.e. the Conceptual Design for Assembly (CDfA) methodology, which is characterized by level, domains and attributes (parameters). A commercial aircraft cabin system was used as a case study to understand the use of different mathematical operators as well as the way to cluster attributes
    • …
    corecore