2 research outputs found
Predicting healthcare professionals’ acceptance towards electronic personal health record systems in a resource-limited setting: using modified technology acceptance model
Objectives Personal health record systems allow users to manage their health information in a confidential manner. However, there is little evidence about healthcare providers’ intentions to use such technologies in resource-limited settings. Therefore, this study aimed to assess predicting healthcare providers’ acceptance of electronic personal health record systems.Methods An institutional-based cross-sectional study was conducted from 19 July to 23 August 2022 at teaching hospitals in the Amhara regional state of Ethiopia. A total of 638 health professionals participated in the study. Simple random sampling techniques were used to select the study participants. Structural equation modelling analysis was employed using AMOS V.26 software.Result Perceived ease of use had a significant effect on the intention to use electronic personal health records (β=0. 377, p<0.01), perceived usefulness (β=0.104, p<0.05) and attitude (β=0.204, p<0.01); perceived ease of use and information technology experience had a significant effect on perceived usefulness (β=0.077, p<0.05); and digital literacy (β=0.087, p<0.05) and attitude had also a strong effect on intention to use electronic personal health records (β=0.361, p<0.01). The relationship between perceived ease of use and the intention to use was mediated by attitude (β=0.076, p<0.01).Conclusion Perceived ease of use, attitude and digital literacy had a significant effect on the intention to use electronic personal health records. The perceived ease of use had a greater influence on the intention to use electronic personal health record systems. Thus, capacity building and technical support could enhance health providers’ acceptance of using electronic personal health records in Ethiopia
Recommended from our members
Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019
Summary
Background
Reducing the burden of death due to infection is an urgent global public health priority. Previous studies have estimated the number of deaths associated with drug-resistant infections and sepsis and found that infections remain a leading cause of death globally. Understanding the global burden of common bacterial pathogens (both susceptible and resistant to antimicrobials) is essential to identify the greatest threats to public health. To our knowledge, this is the first study to present global comprehensive estimates of deaths associated with 33 bacterial pathogens across 11 major infectious syndromes.
Methods
We estimated deaths associated with 33 bacterial genera or species across 11 infectious syndromes in 2019 using methods from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, in addition to a subset of the input data described in the Global Burden of Antimicrobial Resistance 2019 study. This study included 343 million individual records or isolates covering 11 361 study-location-years. We used three modelling steps to estimate the number of deaths associated with each pathogen: deaths in which infection had a role, the fraction of deaths due to infection that are attributable to a given infectious syndrome, and the fraction of deaths due to an infectious syndrome that are attributable to a given pathogen. Estimates were produced for all ages and for males and females across 204 countries and territories in 2019. 95% uncertainty intervals (UIs) were calculated for final estimates of deaths and infections associated with the 33 bacterial pathogens following standard GBD methods by taking the 2·5th and 97·5th percentiles across 1000 posterior draws for each quantity of interest.
Findings
From an estimated 13·7 million (95% UI 10·9–17·1) infection-related deaths in 2019, there were 7·7 million deaths (5·7–10·2) associated with the 33 bacterial pathogens (both resistant and susceptible to antimicrobials) across the 11 infectious syndromes estimated in this study. We estimated deaths associated with the 33 bacterial pathogens to comprise 13·6% (10·2–18·1) of all global deaths and 56·2% (52·1–60·1) of all sepsis-related deaths in 2019. Five leading pathogens—Staphylococcus aureus, Escherichia coli, Streptococcus pneumoniae, Klebsiella pneumoniae, and Pseudomonas aeruginosa—were responsible for 54·9% (52·9–56·9) of deaths among the investigated bacteria. The deadliest infectious syndromes and pathogens varied by location and age. The age-standardised mortality rate associated with these bacterial pathogens was highest in the sub-Saharan Africa super-region, with 230 deaths (185–285) per 100 000 population, and lowest in the high-income super-region, with 52·2 deaths (37·4–71·5) per 100 000 population. S aureus was the leading bacterial cause of death in 135 countries and was also associated with the most deaths in individuals older than 15 years, globally. Among children younger than 5 years, S pneumoniae was the pathogen associated with the most deaths. In 2019, more than 6 million deaths occurred as a result of three bacterial infectious syndromes, with lower respiratory infections and bloodstream infections each causing more than 2 million deaths and peritoneal and intra-abdominal infections causing more than 1 million deaths.
Interpretation
The 33 bacterial pathogens that we investigated in this study are a substantial source of health loss globally, with considerable variation in their distribution across infectious syndromes and locations. Compared with GBD Level 3 underlying causes of death, deaths associated with these bacteria would rank as the second leading cause of death globally in 2019; hence, they should be considered an urgent priority for intervention within the global health community. Strategies to address the burden of bacterial infections include infection prevention, optimised use of antibiotics, improved capacity for microbiological analysis, vaccine development, and improved and more pervasive use of available vaccines. These estimates can be used to help set priorities for vaccine need, demand, and development