7 research outputs found

    Global Strategy for the Conservation and Use of Capsicum Genetic Resources

    Get PDF
    This document aims to provide a framework for the efficient and effective conservation of genetic resources of Capsicum crops. The development of this Global Crop Conservation Strategy was funded by the Government of Germany (BMEL) as part of the three-year project led by the Crop Trust: “Breathing new life into the Global Crop Conservation Strategies". The Crop Trust also cooperated with the Secretariat of The International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) in the development of this document.Supplementary data: Supplementary data for Barchenger D.W. and Khoury C.K. 2022. A Global Strategy for the Conservation and Use of Capsicum Genetic Resources. Global Crop Diversity Trust. Bonn, Germany. DOI: 10.22001/wvc.74702 (https:// worldveg.tind.io/record/74702

    A global strategy for the conservation and use of Capsicum genetic resources

    Get PDF
    This document aims to provide a framework for the efficient and effective conservation of genetic resources of Capsicum crop

    Farmers’ Perception of Viral Diseases and Their Management in Pepper (Capsicum spp.) Production in Benin

    Get PDF
    Pepper (Capsicum spp.) is an important solanaceous cash crop in Benin; however, productivity is limited due to several key constraints, especially diseases caused by viruses. We sought to understand farmers’ perceptions of viral diseases, management strategies deployed, and to identify the virus population affecting pepper production in Benin. To assess farmers’ perceptions and management of viral diseases, a survey was carried out in four agroecological zones of Benin. A total of 144 pepper farmers were interviewed using the snowball method. A total of 52 pepper leaf samples with virus-like symptoms were collected and diagnosed by reverse-transcriptase polymerase chain reaction (RT-PCR) or PCR. Pepper production systems varied across agroecological zones (P ≀ 0.001) with a predominance of farms practicing monoculture (82%). The majority of farmers (89%) indicated that pests and diseases were the main constraints to increased production. Cucumber mosaic virus (92% of the total samples), Pepper vein yellow virus (52%), and Pepper veinal mottle virus (50%) were the major viruses detected in pepper fields in Benin. There were both single (29%) and mixed (71%) infections of the viruses, suggesting that mixed infections are common for pepper in Benin, confounding efforts to reduce virus infections. Nearly 100% of the farmers surveyed were not aware of these viral diseases. They also could not directly relate symptoms of virus infection to the presence of aphids, whiteflies, or thrips. Farmers relied primarily on synthetic insecticides (93%) to control virus vectors. Interestingly, some farmers applied commercial (12%) and homemade (17%) biopesticides, with neem-based preparations being the most widely used. A total of 15% of farmers used companion cropping with maize, mint or basil and 43% of farmers used crop rotation as a cultural management practice to control viral disease and vector pressure in pepper fields. The implications of this work include the importance of training farmers and extension agents on diagnosis of viruses and their vectors causing viral diseases. This study provides baseline information for the development of host-resistant cultivars and deployment of integrated pest management strategies for pepper in Benin to reduce farmer losses

    Challenges and Strategies for Breeding Resistance in Capsicum annuum to the Multifarious Pathogen, Phytophthora capsici

    No full text
    Phytophthora capsici is the most devastating pathogen for chile pepper production worldwide and current management strategies are not effective. The population structure of the pathogen is highly variable and few sources of widely applicable host resistance have been identified. Recent genomic advancements in the host and the pathogen provide important insights into the difficulties reported by epidemiological and physiological studies published over the past century. This review highlights important challenges unique to this complex pathosystem and suggests strategies for resistance breeding to help limit losses associated with P. capsici

    Insights into the genetic architecture of Phytophthora capsici root rot resistance in chile pepper (Capsicum spp.) from multi-locus genome-wide association study

    No full text
    Abstract Background Phytophthora root rot, a major constraint in chile pepper production worldwide, is caused by the soil-borne oomycete, Phytophthora capsici. This study aimed to detect significant regions in the Capsicum genome linked to Phytophthora root rot resistance using a panel consisting of 157 Capsicum spp. genotypes. Multi-locus genome wide association study (GWAS) was conducted using single nucleotide polymorphism (SNP) markers derived from genotyping-by-sequencing (GBS). Individual plants were separately inoculated with P. capsici isolates, ‘PWB-185’, ‘PWB-186’, and ‘6347’, at the 4–8 leaf stage and were scored for disease symptoms up to 14-days post-inoculation. Disease scores were used to calculate disease parameters including disease severity index percentage, percent of resistant plants, area under disease progress curve, and estimated marginal means for each genotype. Results Most of the genotypes displayed root rot symptoms, whereas five accessions were completely resistant to all the isolates and displayed no symptoms of infection. A total of 55,117 SNP markers derived from GBS were used to perform multi-locus GWAS which identified 330 significant SNP markers associated with disease resistance. Of these, 56 SNP markers distributed across all the 12 chromosomes were common across the isolates, indicating association with more durable resistance. Candidate genes including nucleotide-binding site leucine-rich repeat (NBS-LRR), systemic acquired resistance (SAR8.2), and receptor-like kinase (RLKs), were identified within 0.5 Mb of the associated markers. Conclusions Results will be used to improve resistance to Phytophthora root rot in chile pepper by the development of Kompetitive allele-specific markers (KASP¼) for marker validation, genomewide selection, and marker-assisted breeding

    Exploration of high‐throughput data for heat tolerance selection in Capsicum annuum

    No full text
    Abstract Recently, there has been a substantial increase in high‐throughput technologies that generate highly complex large datasets for use in the sciences. Plant breeding and genetics have benefited from this data explosion where many public and private institutions now implement genomic and phenomic data to predict performance thus informing germplasm selection. However, the multitude of methodologies and data generates a situation of strategic uncertainty. We set out to compare different methods of genomic and phenomic selection in the Capsicum core collection, developed through the G2P‐SOL project, producing a combination of unique and similar selected genotypes for heat tolerance. Combined, the methods tested identified a total of 33 genotypes that show tremendous promise for use as parents in heat tolerance breeding: with 13 of these being present in more than 1 selection method. Combining classical and multispectral phenotyping methods produced better selection results than either method alone. When each method was conducted without being informed by the other, similar results were obtained. Our weighted rank‐sum selection index identified 10 entries across environments that show heat tolerance, 8 of which are also selected within heat environments. This suggests that different breeding programs can reach similar results despite having different logistical constraints. Our case study within pepper germplasm using phenomic and genomic data exhibits the potential to compensate for the dearth of germplasm knowledge with high‐throughput data as well as the converse, to compensate for logistical or financial constraint to new technologies with breeder knowledge
    corecore