9 research outputs found

    Insulin-like growth factor-I rescue of primary keratinocytes from pre- and post-ultraviolet B radiation effects

    No full text
    Ultraviolet B radiation (UVBR) induces the formation of photolesions in epidermal keratinocytes, potentially affecting cellular function and contributing towards malignant transformation. Insulin-like growth factor-I (IGF-I) contributes to protection of keratinocytes against UVBR-induced damage. Studies have shown that exogenous IGF-I or dermal fibroblast conditioned media pre-UVBR contributes to protection in primary keratinocytes by preventing apoptosis, modulating cell cycle progression and affecting photolesion removal through its damage preventative effects, however, the efficacy of IGF-I post-UVBR has not been sufficiently addressed. Using 2D and 3D photobiology skin models, the ability of IGF-I post-UVBR to rescue primary keratinocytes from photodamage was investigated. The photoprotective effect of IGF-I, both pre- and post-UVBR on cellular functions of irradiated keratinocytes was examined. IGF-I application, either pre- or post-UVBR, was found to alter keratinocyte survival, apoptosis, cell cycle progression and damage removal responses to UVBR. In particular, IGF-I application post-UVBR was found to promote increased keratinocyte survival, prevent apoptosis, shift cell cycle progression and reduce photodamage in all the skin models. Furthermore, marked differences were observed in activation of signalling cascades upon IGF-I treatment post-UVBR. Taken together, these findings indicate that in addition to a previously known photodamage preventative effect, IGF-I treatment post-UVBR has a photoreparative role suggesting it may hold potential in the development of effective remedial strategies against sunburns and photodamage.</p

    Unravelling the insulin-like growth factor I-mediated photoprotection of the skin

    No full text
    Chronic exposure of human skin to solar ultraviolet radiation (UVR) induces a range of biological reactions which may directly or indirectly lead to the development of skin cancer. In order to overcome these damaging effects of UVR and to reduce photodamage, the skin's endogenous defence system functions in concert with the various exogenous photoprotectors. Growth factors, particularly insulin-like growth factor-I (IGF-I), produced within the body as a result of cellular interaction in response to UVR demonstrates photoprotective properties in human skin. This review summarises the impact of UVR-induced photolesions on human skin, discusses various endogenous as well as exogenous approaches of photoprotection described to date and explains how IGF-I mediates UVR photoprotective responses at the cellular and mitochondrial level. Further, we describe the current interventions using growth factors and propose how the knowledge of the IGF-I photoprotection signalling cascades may direct the development of improved UVR protection and remedial strategies.</p

    RPA facilitates rescue of keratinocytes from UVB radiation damage through insulin-like growth factor-I signalling

    No full text
    UVBR-induced photolesions in genomic DNA of keratinocytes impair cellular functions and potentially determine the cell fate post-irradiation. The ability of insulin-like growth factor-I (IGF-I) to rescue epidermal keratinocytes after photodamage via apoptosis prevention and photolesion removal was recently demonstrated using in vitro twodimensional and three-dimensional skin models. Given the limited knowledge of specific signalling cascades contributing to post-UVBR IGF-I effects,we used inhibitors to investigate the impact of blockade of various signalling mediators on IGF-I photoprotection. IGF-I treatment, in the presence of signalling inhibitors, particularly TDRL-505, which targets replication protein A (RPA), impaired activation of IGF-1R downstream signalling, diminished cyclobutane pyrimidine dimer removal, arrested growth, reduced cell survival and increased apoptosis. Further, the transient partial knockdown of RPA was found to abrogate IGF-I-mediated responses in keratinocytes, ultimately affecting photoprotection and, thereby, establishing that RPA is required for IGF-I function. Our findings thus elucidate the importance of RPA in linking the damage response activation, cell cycle regulation, repair and survival pathways, separately initiated by IGF-I upon UVBRinduced damage. This information is potentially imperative for the development of effective sunburn and photodamage repair strategies. </p

    Substrate-bound insulin-like growth factor (IGF)-I-IGF binding protein-vitronectin-stimulated breast cell migration is enhanced by coactivation of the phosphatidylinositide 3-Kinase/AKT pathway by alphav-integrins and the IGF-I receptor

    No full text
    IGF-I can bind to the extracellular matrix protein vitronectin (VN) through the involvement of IGF-binding proteins-2, -3, -4, and -5. Because IGF-I and VN have established roles in tumor cell dissemination, we were keen to investigate the functional consequences of the interaction of IGF-I, IGF binding proteins (IGFBPs), and VN in tumor cell biology. Hence, functional responses of MCF-7 breast carcinoma cells and normal nontumorgenic MCF-10A mammary epithelial cells were investigated to allow side-by-side comparisons of these complexes in both cancerous and normal breast cells. We demonstrate that substrate-bound IGF-I-IGFBP-VN complexes stimulate synergistic increases in cellular migration in both cell types. Studies using IGF-I analogs determined this stimulation to be dependent on both heterotrimeric IGF-I-IGFBP-VN complex formation and the involvement of the IGF-I receptor (IGF-IR). Furthermore, the enhanced cellular migration was abolished on incubation of MCF-7 and MCF-10A cells with function blocking antibodies directed at VN-binding integrins and the IGF-IR. Analysis of the signal transduction pathways underlying the enhanced cell migration revealed that the complexes stimulate a transient activation of the ERK/MAPK signaling pathway while simultaneously producing a sustained activation of the phosphatidylinositide 3-kinase/AKT pathway. Experiments using pharmacological inhibitors of these pathways determined a requirement for phosphatidylinositide 3-kinase/AKT activation in the observed response. Overexpression of wild type and activated AKT further increases substrate-bound IGF-I-IGFBP-VN-stimulated migration. This study provides the first mechanistic insights into the action of IGF-I-IGFBP-VN complexes and adds further evidence to support the involvement of VN-binding integrins and their cooperativity with the IGF-IR in the promotion of tumor cell migration

    Can we predict diabetes-related peripheral neuropathy without lifting a finger? Testing the Bongaerts clinical screening score tool in an Australian population

    No full text
    The Bongaerts clinical screening score (CSS) for diabetes related peripheral neuropathy (DPN)was developed in an attempt to improve screening for DPN. This study aimed to test the\ud predictive validity of the Bongaerts models for detecting DPN in a cohort with type 1 and type 2 diabetes

    Characterisation of a human skin equivalent model to study the effects of ultraviolet B radiation on keratinocytes

    Get PDF
    The incidences of skin cancers resulting from chronic ultraviolet radiation (UVR) exposure are on the incline both in Australia and globally. Hence, the cellular and molecular pathways associated with UVR-induced photocarcinogenesis urgently need to be elucidated, in order to develop more robust preventative and treatment strategies against skin cancers. In vitro investigations into the effects of UVR (in particular the highly-mutagenic UVB wavelength) have, to date, mainly involved the use of cell culture and animal models. However, these models possess biological disparities to native skin, which to some extent have limited their relevance to the in vivo situation. To address this, we characterised a 3-dimensional, tissue-engineered human skin equivalent (HSE) model (consisting of primary human keratinocytes cultured on a dermal-derived scaffold) as a representation of a more physiologically-relevant platform to study keratinocyte responses to UVB. Significantly, we demonstrate that this model retains several important epidermal properties of native skin. Moreover, UVB-irradiation of the HSE constructs was shown to induce key markers of photodamage in the HSE keratinocytes, including the formation of cyclobutane pyrimidine dimers, the activation of apoptotic pathways, the accumulation of p53 and the secretion of inflammatory cytokines. Importantly, we also demonstrate that the UVB-exposed HSE constructs retain the capacity for epidermal repair and regeneration following photodamage. Together, our results demonstrate the potential of this skin equivalent model as a tool to study various aspects of the acute responses of human keratinocytes to UVB radiation damage

    Chimeric Vitronectin : Insulin-like Growth Factor Proteins Enhance Cell Growth and Migration through Co-Activation of Receptors

    Get PDF
    Complexes comprised of IGF-I, IGF-binding proteins and the ECM protein vitronectin (VN) stimulate cell migration and growth and can replace the requirement for serum for the ex vivo expansion of cells, as well as promote wound healing in vivo. Moreover, the activity of the complexes is dependent on co-activation of the IGF-I receptor and VN-binding integrins. In view of this we sought to develop chimeric proteins able to recapitulate the action of the multiprotein complex within a single molecular species. We report here the production of two recombinant chimeric proteins, incorporating domains of VN linked to IGF-I, which mimic the functions of the complex. Further, the activity of the chimeric proteins is dependent on co-activation of the IGF-I- and VN-binding cell surface receptors. Clearly the use of chimeras that mimic the activity of growth factor:ECM complexes, such as these, offer manufacturing advantages that ultimately will facilitate translation to cost-effective therapies
    corecore