6 research outputs found

    Exome Sequence Analysis of 14 Families With High Myopia

    Get PDF
    PURPOSE: To identify causal gene mutations in 14 families with autosomal dominant (AD) high myopia using exome sequencing. METHODS: Select individuals from 14 large Caucasian families with high myopia were exome sequenced. Gene variants were filtered to identify potential pathogenic changes. Sanger sequencing was used to confirm variants in original DNA, and to test for disease cosegregation in additional family members. Candidate genes and chromosomal loci previously associated with myopic refractive error and its endophenotypes were comprehensively screened. RESULTS: In 14 high myopia families, we identified 73 rare and 31 novel gene variants as candidates for pathogenicity. In seven of these families, two of the novel and eight of the rare variants were within known myopia loci. A total of 104 heterozygous nonsynonymous rare variants in 104 genes were identified in 10 out of 14 probands. Each variant cosegregated with affection status. No rare variants were identified in genes known to cause myopia or in genes closest to published genome-wide association study association signals for refractive error or its endophenotypes. CONCLUSIONS: Whole exome sequencing was performed to determine gene variants implicated in the pathogenesis of AD high myopia. This study provides new genes for consideration in the pathogenesis of high myopia, and may aid in the development of genetic profiling of those at greatest risk for attendant ocular morbidities of this disorder

    Single-cell RNA sequencing of neurofibromas reveals a tumor microenvironment favorable for neural regeneration and immune suppression in a neurofibromatosis type 1 porcine model

    Get PDF
    Neurofibromatosis Type 1 (NF1) is one of the most common genetically inherited disorders that affects 1 in 3000 children annually. Clinical manifestations vary widely but nearly always include the development of cutaneous, plexiform and diffuse neurofibromas that are managed over many years. Recent single-cell transcriptomics profiling efforts of neurofibromas have begun to reveal cell signaling processes. However, the cell signaling networks in mature, non-cutaneous neurofibromas remain unexplored. Here, we present insights into the cellular composition and signaling within mature neurofibromas, contrasting with normal adjacent tissue, in a porcine model of NF1 using single-cell RNA sequencing (scRNA-seq) analysis and histopathological characterization. These neurofibromas exhibited classic diffuse-type histologic morphology and expected patterns of S100, SOX10, GFAP, and CD34 immunohistochemistry. The porcine mature neurofibromas closely resemble human neurofibromas histologically and contain all known cellular components of their human counterparts. The scRNA-seq confirmed the presence of all expected cell types within these neurofibromas and identified novel populations of fibroblasts and immune cells, which may contribute to the tumor microenvironment by suppressing inflammation, promoting M2 macrophage polarization, increasing fibrosis, and driving the proliferation of Schwann cells. Notably, we identified tumor-associated IDO1+/CD274+ (PD-L1)+ dendritic cells, which represent the first such observation in any NF1 animal model and suggest the role of the upregulation of immune checkpoints in mature neurofibromas. Finally, we observed that cell types in the tumor microenvironment are poised to promote immune evasion, extracellular matrix reconstruction, and nerve regeneration

    Dicer's helicase domain is required for accumulation of some, but not all, C. elegans endogenous siRNAs

    No full text
    Years after the discovery that Dicer is a key enzyme in gene silencing, the role of its helicase domain remains enigmatic. Here we show that this domain is critical for accumulation of certain endogenous small interfering RNAs (endo-siRNAs) in Caenorhabditis elegans. The domain is required for the production of the direct products of Dicer, or primary endo-siRNAs, and consequently affects levels of downstream intermediates, the secondary endo-siRNAs. Consistent with the role of endo-siRNAs in silencing, their loss correlates with an increase in cognate mRNA levels. We find that the helicase domain of Dicer is not necessary for microRNA (miRNA) processing, or RNA interference following exposure to exogenous double-stranded RNA. Comparisons of wild-type and helicase-defective strains using deep-sequencing analyses show that the helicase domain is required by a subset of annotated endo-siRNAs, in particular, those associated with the slightly longer 26-nucleotide small RNA species containing a 5′ guanosine
    corecore