48 research outputs found

    Characterization of Error-Tolerant Applications when Protecting Control Data

    Get PDF
    Soft errors have become a significant concern and recent studies have measured the architectural vulnerability factor of systems to such errors, or conversely, the potential that a soft error is masked by latches or other system behavior. We take soft-error tolerance one step further and examine when an application can tolerate errors that are not masked. For example, a video decoder or approximation algorithm can tolerate errors if the user is willing to accept degraded output. The key observation is that while the decoder can tolerate error in its data, it can not tolerate error in its control. We first present static analysis that protects most control operations. We examine several SPEC CPU2000 and MiBench benchmarks for error tolerance, develop fidelity measures for each, and quantify the effect of errors on fidelity. We show that protecting control is crucial to producing error-tolerance, for without this protection, many applications experience catastrophic errors (infinite execution time or crashing). Overall, our results indicate that with simple control protection, the error tolerance of many applications can provide designers with considerable added flexibility when considering future challenges posed by soft errors

    MCM3AP in recessive Charcot-Marie-Tooth neuropathy and mild intellectual disability

    Get PDF
    Defects in mRNA export from the nucleus have been linked to various neurodegenerative disorders. We report mutations in the gene MCM3AP, encoding the germinal center associated nuclear protein (GANP), in nine affected individuals from five unrelated families. The variants were associated with severe childhood onset primarily axonal (four families) or demyelinating (one family) Charcot-Marie-Tooth neuropathy. Mild to moderate intellectual disability was present in seven of nine affected individuals. The affected individuals were either compound heterozygous or homozygous for different MCM3AP variants, which were predicted to cause depletion of GANP or affect conserved amino acids with likely importance for its function. Accordingly, fibroblasts of affected individuals from one family demonstrated severe depletion of GANP. GANP has been described to function as an mRNA export factor, and to suppress TDP-43-mediated motor neuron degeneration in flies. Thus our results suggest defective mRNA export from nucleus as a potential pathogenic mechanism of axonal degeneration in these patients. The identification of MCM3AP variants in affected individuals from multiple centres establishes it as a disease gene for childhood-onset recessively inherited Charcot-Marie-Tooth neuropathy with intellectual disability.Peer reviewe

    Very accurate cryogenic mechanisms for CRIRES+

    Get PDF
    After 5 years of operation on the VLT, a large upgrade of CRIRES (the ESO Cryogenic InfraRed Echelle Spectrograph) was decided mainly in order to increase the efficiency. Using a cross dispersion design allows better wavelength coverage per exposure. This means a complete re-design of the cryogenic pre-optic which were including a predispersion stage with a large prism as dispersive element. The new design requires a move of the entrance slit and associated decker toward the first intermediate focal plane right behind the window. Implement 2 functions with high positioning accuracy in a pre-defined and limited space was a real challenge. The design and the test results recorded in the ESO Cryogenic Test Facility are reported in this paper. The second critical function is the grating wheel which positions the 6 cross disperser gratings into the beam. The paper describes the design of the mechanism which includes a detente system in order to guaranty the 5 arc sec positioning reproducibility requested. The design includes also feedback system, based on switches, in order to ensure that the right grating is in position before starting a long exposure. The paper reports on the tests carried out at cryogenic temperature at the sub-system level. It also includes early performances recorded in the instrument along the first phases of the system test

    Genomic epidemiology reveals multiple introductions of Zika virus into the United States

    Get PDF
    Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016-several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions

    Proceedings of the 3rd Biennial Conference of the Society for Implementation Research Collaboration (SIRC) 2015: advancing efficient methodologies through community partnerships and team science

    Get PDF
    It is well documented that the majority of adults, children and families in need of evidence-based behavioral health interventionsi do not receive them [1, 2] and that few robust empirically supported methods for implementing evidence-based practices (EBPs) exist. The Society for Implementation Research Collaboration (SIRC) represents a burgeoning effort to advance the innovation and rigor of implementation research and is uniquely focused on bringing together researchers and stakeholders committed to evaluating the implementation of complex evidence-based behavioral health interventions. Through its diverse activities and membership, SIRC aims to foster the promise of implementation research to better serve the behavioral health needs of the population by identifying rigorous, relevant, and efficient strategies that successfully transfer scientific evidence to clinical knowledge for use in real world settings [3]. SIRC began as a National Institute of Mental Health (NIMH)-funded conference series in 2010 (previously titled the “Seattle Implementation Research Conference”; $150,000 USD for 3 conferences in 2011, 2013, and 2015) with the recognition that there were multiple researchers and stakeholdersi working in parallel on innovative implementation science projects in behavioral health, but that formal channels for communicating and collaborating with one another were relatively unavailable. There was a significant need for a forum within which implementation researchers and stakeholders could learn from one another, refine approaches to science and practice, and develop an implementation research agenda using common measures, methods, and research principles to improve both the frequency and quality with which behavioral health treatment implementation is evaluated. SIRC’s membership growth is a testament to this identified need with more than 1000 members from 2011 to the present.ii SIRC’s primary objectives are to: (1) foster communication and collaboration across diverse groups, including implementation researchers, intermediariesi, as well as community stakeholders (SIRC uses the term “EBP champions” for these groups) – and to do so across multiple career levels (e.g., students, early career faculty, established investigators); and (2) enhance and disseminate rigorous measures and methodologies for implementing EBPs and evaluating EBP implementation efforts. These objectives are well aligned with Glasgow and colleagues’ [4] five core tenets deemed critical for advancing implementation science: collaboration, efficiency and speed, rigor and relevance, improved capacity, and cumulative knowledge. SIRC advances these objectives and tenets through in-person conferences, which bring together multidisciplinary implementation researchers and those implementing evidence-based behavioral health interventions in the community to share their work and create professional connections and collaborations

    Constructing Vertically Integrated Hardware Design Methodologies Using Embedded Domain-Specific Languages And Just-In-Time Optimization

    Full text link
    The growing complexity and heterogeneity of modern application-specific integrated circuits has made hardware design methodologies a limiting factor in the construction of future computing systems. This work aims to alleviate some of these design challenges by embedding productive hardware modeling and design constructs in general-purpose, high-level languages such as Python. Leveraging Python-based embedded domain-specific languages (DSLs) can considerably improve designer productivity over traditional design flows based on hardware-description languages (HDLs) and C++, however, these productivity benefits can be severely impacted by the poor execution performance of Python simulations. To address these performance issues, this work combines Python-based embedded-DSLs with just-in-time (JIT) optimization strategies to generate high-performance simulators that significantly reduce this performance-productivity gap. This thesis discusses two frameworks I have constructed that use this novel design approach: PyMTL, a Python-based, concurrent-structural modeling framework for vertically integrated hardware design, and Pydgin, a framework for generating high-performance, just-in-time optimizing instruction set simulators from high-level architecture descriptions

    Exploring the Tradeoffs between Programmability and Efficiency in Data-Parallel Accelerators

    No full text
    We present a taxonomy and modular implementation approach for data-parallel accelerators, including the MIMD, vector-SIMD, subword-SIMD, SIMT, and vector-thread (VT) architectural design patterns. We have developed a new VT microarchitecture, Maven, based on the traditional vector-SIMD microarchitecture that is considerably simpler to implement and easier to program than previous VT designs. Using an extensive design-space exploration of full VLSI implementations of many accelerator design points, we evaluate the varying tradeoffs between programmability and implementation efficiency among the MIMD, vector-SIMD, and VT patterns on a workload of microbenchmarks and compiled application kernels. We find the vector cores provide greater efficiency than the MIMD cores, even on fairly irregular kernels. Our results suggest that the Maven VT microarchitecture is superior to the traditional vector-SIMD architecture, providing both greater efficiency and easier programmability
    corecore