
1

Characterization of Error-Tolerant Applications when Protecting Control Data

Darshan D. Thaker †, Diana Franklin ‡, John Oliver †,

Susmit Biswas �, Derek Lockhart ‡, Tzvetan Metodi †, Frederic T. Chong�

†University of California, Davis

�University of California, Santa Barbara

‡California Polytechnic State University, San Luis Obispo

contact: ddthaker@ucdavis.edu

Abstract	 semiconductor device. This may lead to transient faults that
cause single bit upsets, which in turn may introduce a logi-

Soft errors have become a significant concern and recent cal fault in the circuit. In addition, as the number of transis
studies have measured the “architectural vulnerability fac- tors increases, so does the complexity, which makes verifi
tor” of systems to such errors, or conversely, the potential cation a much harder process, thus increasing the chance of
that a soft error is masked by latches or other system be- undetected errors.
havior. We take soft-error tolerance one step further and A considerable amount of recent research has focused
examine when an application can tolerate errors that are on understanding how errors in low-level circuits manifest
not masked. For example, a video decoder or approxima- themselves in the architecture. Much of this research in
tion algorithm can tolerate errors if the user is willing to error-tolerance has focused on preventing any errors from
accept degraded output. The key observation is that while affecting the running program. One can run two copies of
the decoder can tolerate error in its data, it can not tolerate the program, utilizing simultaneous redundant multithread
error in its control. ing to detect and correct errors. At the hardware level, re-

We first present static analysis that protects most con- liable circuits can be constructed from error-prone compo
trol operations. We examine several SPEC CPU2000 and nents, but at the cost of increased circuit size and latency
MiBench benchmarks for error tolerance, develop fidelity [3]. Unfortunately, this cost is not sustainable when applied
measures for each, and quantify the effect of errors on fi- uniformly [4] .
delity. We show that protecting control is crucial to produc- This paper focuses on applications that exhibit some tol
ing error-tolerance, for without this protection, many ap erance to reduced accuracy. In the embedded domain, such
plications experience catastrophic errors (infinite execution tolerance is often used to accomodate variations in quality
time or crashing). of service in communication and network performance. We

Overall, our results indicate that with simple control suggest that trends in technology and usage shall motivate
protection, the error tolerance of many applications can ”pushing” this tolerance into the microarchitecture. To do
provide designers with considerable added flexibility when so, we must understand what effect errors due to the mi-
considering future challenges posed by soft errors. croarchitecture have on the application.

To manage this interaction between the microarchitec
ture and applications, we leverage the following key ob

1 Introduction	 servation: computations involving control are much more
sensitive to inaccuracy than others [5]. We propose using

As the minimum feature size of process technologies static analysis to identify instructions leading to control de-
continues to decrease, microprocessor designers are faced cisions. We present a set of applications that, when pro-
with new reliability challenges. Feature sizes of less than tected with our compiler, perform better in the face of er
0.25µm result in an increased likelihood of noise-related rors. We quantify the benefit of this protection by defining
faults that are the result of electrical disturbances in the application specific fidelity measures for relaxed accuracy
logic values held in circuits and on wires [1, 2] . Natural ra- requirements. Note that, although our focus is error-tolerant
diation such as neutrons produced by cosmic rays and alpha applications, our solutions are not application-specific.
particles generate electron-hole pairs as they pass through a We continue by describing the applications in Section 2.

1-4244-0509-2/06/$20.00 ©2006 IEEE	 142

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19136191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Application Description Fidelity Measure

Susan edge detection Imagemagick comparison
MPEG video encoding % frames not dropped
MCF vehicle scheduler % extra time in schedule

Blowfish encryption % bytes correct from original
GSM speech encoding/decoding signal-to-noise difference
ART image recognition error in confidence of match

Table 1: Summary applications and their fidelity measures

We then present our static anlysis in Section 3. Sections
4 and 5 describe our methodology and present our results.
We place this in the context of recent work in Section 6. We
conclude in Section 7.

2 Applications

We focus on application classes that do not require full
accuracy to get their intended results. This can occur in
several ways. First, applications that interact with human
senses are very tolerant to slight inaccuracies. For exam
ple, phone lines do not carry sound perfectly, yet are suf
ficient for human perception. Second, there are numerical
and search algorithms that expect to iterate until an adequate
answer is attained.

In this study, we identify several applications that are tol
erant of errors to varying degrees. All applications are part
of SPEC CPU2000 [6] or MiBench [7]. Perceptual applica
tions are more tolerant than decision-making applications.
In order to evaluate each application, we define a fidelity
measure for this application. This is typically some sort of
distance from the optimal solution. For some applications,
we have also defined a fidelity threshold, which is a subjec
tive measure on how much inaccuracy a user would tolerate.
We will briefly describe the applications we studied and the
fidelities we defined for each one. The information is sum
marized in Table 1.

Susan

Susan is an application, from the MiBench suite, that
implements the Smallest Univalue Segment Assimilat
ing Nucleus (Susan) Principle, which performs edge
and corner detection and structure preserving noise re
duction. The Susan Principle is implemented using
digital approximation of circular masks, (sometimes
known as windows or kernels). If the brightness of
each pixel within a mask is compared with the bright
ness of that mask’s nucleus, then an area of the mask
can be defined which has the same (or similar) bright
ness as the nucleus.

We use Imagemagick [8] to determine the fidelity of
the output. The fidelity threshold is 10dB PSNR, which
means that the output after error insertion is considered
bad if Imagemagick, after comparing the corrupted and
correct images, returns a difference of 10dB or greater.

MPEG:

The MPEG standard, first proposed by the Moving Pic
ture Experts Group in 1993, currently forms the most
popular compression method for video and audio, and
for streaming applications. Instead of encoding each
frame individually, frames are encoded as the differ
ence bewteen themselves and the previous frame, al
lowing for much denser encoding.

There are three types of frames in an MPEG file, in or
der of importance they are: I frames, P frames and B
frames. In general, the loss of B and P frames can be
compensated for by the decoder, while the loss of an
I frame will result in very noticeable quality degrada
tion.

Our fidelity measure is the number of bad frames. A
frame is considered bad if the SNR value compared
to the correct frame is more than 2dB for I frames, 4
dB for P frames and 6 dB for B frames. The fidelity
threshold, or the acceptable quality for viewers, is 10%
of bad frames.

MCF is a benchmark from the SPEC 2000 integer bench
mark suite. It is a single-depot vehicle scheduler for
public mass transportation. Based on routes and de
sired frequencies of service, a schedule is determined.
The schedule is determined using a network simplex
algorithm which is a specialized version of the well
known simplex algorithm for network flow problems.
We measure the fidelity of the MCF schedule with er
rors inserted by comparing the schedules of an optimal
schedule.

Blowfish is a symmetric block cipher with a variable
length key. It was developed in 1993 by Bruce Schnei
der. Its key length can range from 32 to 448 bits. The

143

3

input data used is ASCII text file. The fidelity mea
sure is the percent of bytes that match between the in
put(original) and the output data. The output data was
obtained by decrypting the data obtained by encrypting
input. The fidelity measure is the percent of similarity
of the input ASCII data and the output ASCII data.

Adpcm or Adaptive Differential Pulse Code Modulation
(ADPCM) is a variation of the well-known standard
Pulse Code Modulation (PCM). The ADPCM en
code/decode package included in this benchmark was
implemented by Jack Jansen. The ADPCM encoder
takes 16-bit linear PCM samples and converts them to
4-bit samples, yielding a compression rate of 4:1. The
decoder program converts the adpcm data to pcm data.
The input data are small and large speech samples.
ADPCM encode/decode have approximately 80% in
teger ALU operations and fewer than 10% branch op
erations for a very computation intensive operation.
The fidelity measure is the percent of similarity of the
output PCM data when errors were inserted with the
output PCM data with no errors inserted. Though the
input data is sample speech file, this metric was used
instead of SNR as this benchmark does not treat data
and hearder separately. Hence the generated output
was not speech files. Instead they were ADPCM en
coded data of sound file.

GSM is a benchmark from the MiBench suite in the
telecommunications group. GSM communications is
the communications standard that operates the major
ity of cell phones in Europe. A large speech sample is
first encoded, then decoded. The fidelity measurement
used is the signal-to-noise difference between the de
coded output with errors inserted into the decoder, and
the decoded output without error insertion. Typically,
a 6 dB loss in signal for voice communications does
not distort voice communications beyond recognition.

ART is a benchmark from the SPEC 2000 floating point
benchmark suite. ART is a neural network utilized to
identify items within an image. After the neural net
is first trained on objects, it is provided with a ther
mal image. The thermal image is scanned with a win
dow corresponding to the size of the learned objects.
From this windowed imageage, the neural net attempts
to identify the objects it has learned.

All of these applications have in common the fact that
they can tolerate errors in just certain areas of the algo
rithms. For example, if the approximation algorithm were
to exit the loop too early, that would constitute failure, not
just increased execution time. Likewise, if the simulated an
nealing problem ended early, it might exit with a local max

ima, not a global maxima. Worse, if the decision itself were
corrupted, it might give the wrong answer altogether. It is
important in our work that we analyze where the algorithms
are tolerant to errors. Somewhat surprisingly, we find that
we can perform our protection at the assembly level with an
automatic compiler. The programmer identifies which func
tions can tolerate some error to their data, and the compiler
tags instructions that do not affect the control operations.

3 Static Analysis

We found in a previous study[5] that protecting data used
for control increases the fidelity of MPEG dramatically. In
this section, we describe a simple data flow analysis tech
nique for identifying Def-Use chains that lead to control
flow decisions.

Our goal for perfoming data flow analysis is to identify
arthimetic instructions that lead to a change in control flow.
The technique we employ is used in contemporary com
pilers to determine reaching definitions [9], which enable
optimizations such as loop-invariant code motion and copy
propagation. We start at the last instruction of a basic block
and move in the direction opposite program flow, tagging
arithmetic instructions that do not influence control flow.
We assume inter-procedural analysis.

We define elements of set CVar as variables likely to in
fluence control flow. Any arithmetic instruction whose des
tination variable is not ∈ CVar is tagged. In addition, each
instruction may add and/or remove elements from CVar.
Instructions that directly influence control flow will add el
ements to CVar. Instructions that define (write to) variables
∈ CVar will both remove those defined variables and add to
CVar the variables used in the definition. The process com
pletes when set CVar becomes empty. Note that CVar may
not be empty even after we consider all instructions in the
current basic block. As a result, to complete this analysis, it
may be necessary to cross basic block boundaries and even
procedure boundaries.

The following example will demonstrate the ideas de
scribed above.

BB 0:

.

.

I0: $2 = $4 + 1 *

I1: LD $3, addr []

I2: $2 = $3 + 2 [$3]

I3: $3 = $3 + 8 [$3, $2]

I4: $10 = $8 - $4 [$3, $2] *

.

.

BB 1:

144

4

Algorithm Errors Introduced Total Instructions
% Failures

With Protection
% Failures

Without Protection

Susan 2200 144M 0% 10%

MPEG
20
120

2.74B 0%
0%

100%
100%

MCF
1

340
201M 0%

6%
100%
100%

Blowfish
2
20

507M 0%
19%

10%
48%

GSM
10
40

892M 0%
0%

100%
100%

ART 4 42.77B 0% 0%

ADPCM
3
56

324M 2%
8%

8.5%
53.5%

Table 2: The percentage of catastrophic failures (infinite runs or crashes) with and without protecting control data.

I5: $10 = $3 << $2 [$3, $2] tional simulation.

I6: $4 = $3 + $6 [$3, $10] *

I7: $3 = $3 + 1 [$3, $10]
 60
I8: BNE $3, $10, label [$3, $10]
 Static Analysis ON

Static Analysis OFF
Fidelity threshold

2300 1550 1100 920 100

The above code shows two basic blocks, BB0 and BB1.
We wish to determine what instructions, from those shown,
will affect the outcome of the branch that ends BB1. The
square brackets after each instruction show the contents of
set CVar after processing each instruction. (BNE: branch if
not equal, LD: load from address) To start the analysis, we
begin at the bottom of basic block 1, at instruction I8, and
set CVar is empty. I8 generates elements $3 and $10 for
CVar. I7 defines $3, thus it will remove $3. But I7 also uses
$3 thus adding it back to CVar. I6 does not change CVar and
may safely be tagged. I5 will remove $10 while adding $2.
I4 may be safely tagged. I3 behaves like I7. I2 defines $2,

P
S

N
R

 o
f

P
ic

tu
re

s
w

ith
 E

rr
o

r

50

 40

 30

 20

 10

 0

thus removing it, finally set CVar becomes empty as a result
of instruction I1. The instructions we tag as not influencing Avg. Errors Inserted
the branch in instruction I8 are I6, I4 and I0.

4 Methodology

There were two major elements to our experiments. The
first is the static analysis, and the second is the simulation.

Static analysis was performed at the MIPS assembly
level. Only functions that were user-identified as eligible
were tagged. In order to be eligible, the data in the func
tion must be in some way tolerable to error. A memory
allocation function, for example, would not be eligible for
tagging. A function that manipulates the data in an image
would be.

Our compiler generated tagged executables that were
then run on on Simplescalar[10] enivironment for func-

Figure 1: Susan Results

Error Insertion:In this paper, we do not attempt to study the
masking effects of circuits or of the microarchitecture on
soft-errors. We are interested in the behavior of the appli
cation when an error, a bit-flip, becomes visible to it. To
model this, we flip a bit in the result of an instruction that
was tagged as not influencing a control decision. We as
sume that untagged instructions will be protected in some
way (e.g. redundant exection or extra hardware).

Single bit-flip errors were randomly inserted with a uni
form distribution. Once an error was introduced in any in
struction, it would propagate to all dependent instructions.
The number of errors introduced for all applications was

145

5

 4

 10
much higher than current soft error rates. This was nec
essary to evaluate the change in fidelity as the error rate
increased.

 100

Correct Schedules

Failures

0 50 100 150 200 250 300
%
 o

f
F

a
ile

d
 R

u
n

s

%
 O

p
tim

a
l S

ch
e
d
u
le

s
F

o
u
n
d

%
 F

a
ile

d
 E

xe
cu

tio
n
s

90 8

 80 6Static Analysis ON
Failures

Fidelity Threshold

500 300 150 100 50

16

%
 o

f
B

a
d

 F
ra

m
e

s

7012

 602
 8

 50
 1
4

 0 0

Errors Inserted

Figure 2: MPEG Results

5 Experimental results

Our purpose is to show that several benchmark applica
tions are error-tolerant. We begin by showing that with
out protecting control data, even applications that were de
signed to tolerate errors experience frequent catastrophic
failure. We continue by showing the degradation in fidelity
as errors are introduced into the applications. Finally, we
look at the potential in performance and/or cost by exploit
ing this error tolerance.

5.1	 Protecting Control Data

Ideally, we would show the difference in fidelity between
running the unchanged application in the presence of er
rors and running the application that has been tagged by our
compiler. We found that without protecting control data, a
very high percentage of the simulations failed, making such
a comparison was unfeasible. Table 2 shows the percentage
of simulations that ended in catastrophic failures for each
application. Two data points are shown, one on each end
of the number of errors introduced to that application. We
show the lowest error rate for which the unchanged appli
cation failed for all simulations.

We find that without protecting control data, there is little
or no error tolerance. This true even for applications like the
MPEG decoder, which can work around inconsistencies in
data such as loss of packets. We also see that even with our

Errors Inserted

Figure 3: MCF Results

static analysis, some failures do occur. Because we perform
no memory disambiguation, it is possible for an a value,
tagged as not influencing control, to be written to memory
and later to be read back from memory and used for a con
trol calculation. If an error where introduced into such a
value, it could lead to a catastrophic failure. So although
we make great strides in protecting control data, we do not
protect everything.

5.2	 Error Tolerance with Control Protec
tion

We begin with MPEG and Susan, whose results are
shown in Figures 2 and 1. These applications were simu
lated with very high error rates because no fidelity was lost
at lower error rates. We see that it takes more than 100
errors per second before Susan shows any frame loss due
to the SNR being too low. In addition, although the unpro
tected execution suffers no catastrophic errors, the fidelity is
substantially lower than with protection. MPEG has about
2% loss at 10 errors per second. It has no results without
protection, since all simulations crashed. For Susan, dis
abling protection leads to very poor fidelity of output, how
ever it does not crash the application. This can be attributed
to the relatively small number of instructions (fewer than
9%) that are intolerant to error as shown in table 3.

In Figure 3 we see the results of the SPEC 2k benchmark
MCF. The MCF benchmark performs quite well with errors
inserted. Over 95% of schedules are still correct with 20
errors inserted into a simulation run of over 201M instruc
tions. The incorrect schedules were all noticeably incorrect
- although the application completed and printed results,

146

 0

 2

6

the schedules were not just inoptimal, but incomplete. So
someone using the application would know immediately to
rerun the application.

Figure 4 shows the effect errors had on the encryption
application Blowfish. At 10 errors, the output is identical
to the correct output. As we add more errors, however, the
application begins experiencing catastrophic failures as well
as a loss in precision. At 40 errors inserted, it fails 17% of
the time, and its accuracy is only 84%.

The GSM application, shown in Figure 5, performs quite

Algorithm Instructions % Low Reliability Instr

Susan 144.3M 91.3%
MPEG 2.74B 50.3%
MCF 201.0M 8.9%
Blowfish 507.1M 62.4%
ADPCM 324.1M 93.26%
GSM 892.0M 19.6%
ART 42.77B 70.8%

Table 3: The number of instructions and percentage of dynamic well when subjected to errors. Only a 95% of SNR, or 2dB
instructions that our static analysis identified as not leading to loss of signal, is heard if 20 errors are inserted over a run of
control instructions. These instructions could be run in a low892M instructions. Seven dB are lost with the insertion of
reliability environment.

40 errors.

less than 10% of its instructions, making it the most promis110 50
Fidelity

Failures

0 5 10 15 20 25 30 35 40

ing application for exploiting this property.

 100

%

 F
a
ile

d
 E

xe
cu

tio
n
s

%
 S

N
R

 f
ro

m
 O

p
tim

a
l

 40

%
 B

yt
e
s

C
o
rr

e
ct 110

 70

Fidelity
Failures

90
 30 100

%
 F

a
ile

d
 E

xe
cu

tio
n
s

80

 70

 90
20

 80
1060

 50 0
 60

Errors Inserted

Figure 4: Blowfish Results

The ART application from SPEC 2k suite is more sus
ceptable to errors. With only two errors inserted, only three
quarters of the time did the benchmark correctly identify
the object it was looking for in the thermal image. It never
suffers from catastrophic error, however.

5.3 Future Potential

Fault-tolerance in itself is not our goal. We would like
to exploit this property to provide faster or cheaper relia
bility. We could employ well-known reliability implemen
tations to protect control data while running the rest of the
instructions, labeled in Table 3 as low-reliability instruc
tions, on cheaper or faster hardware. In order for this to be
beneficial, a sufficient percentage of the execution must be
on low-reliability instructions. The table above shows that
Susan, our most error-tolerant application, needs to protect

50 0
 0 5 10 15 20 25 30 35 40

Errors Inserted

Figure 5: GSM Results

6 Related Work

Our work is related to many areas of error-tolerance.
There has been recent work in reducing the cost of relia
bility, more accurately modeling soft errors, and providing
applications that can tolerate errors.

Many groups have developed techniques to provide cor
rectness in the face of failures. The RAMP architecture [11]
dynamically adapts the reliability of the processor depend
ing on the device properties through time. As different com
ponents fail, the architecture adjusts parameters to maintain
the overall level of reliability desired. Weaver et al [12] de
veloped techniques to reduce the probability or errors and

147

 2

 4

 6

 8

 10

7

 0

 20

 40

 60

 80

 100

 0

 20

 40

 60

 80

 100
%

 I
m

a
g
e
s

R
e
co

g
n
iz

e
d

Fidelity
Failures

%
 F

a
ile

d
 E

xe
cu

tio
n
s

applications in [19]. Our work is similar in spirit, but we fo
cus on compiler support to protect control data, which we
first proposed in [5] and find in this study to be critical when
examining broader application domains.

7 Conclusions

Our results indicate that error-tolerance in some applica
tions offer significant potential for architectural optimiza
tion. However, it is imperative to protect control structures
when executing in an unreliable environment. Even the
most fault-tolerant applications, mpeg and susan, are very
sensitive to errors that affect their control. We find that with
static analysis, many applications can be protected such that 0 0.5 1 1.5 2 2.5 3 3.5 4
their tolerance to errors is greatly improved. Moreover, the

Errors Inserted fraction of dynamic instructions related to control structures
is often small when compared to overall execution. This in-

Figure 6: Art Results dicates that only moderate effort is necessary for an archi
tecture to protect these instructions through redundancy.

reducing the impact of errors. They analyzed which struc
tures were less reliabile and reduced the time spent in those
structures. Mukherjee et al [13] studied how to more ac
curately model errors in microarchitectures. Austin et al
propose the Razor architecture [14], which uses “shadow
latches” to check pipeline paths in the presence of voltage
overscaling.

There is a growing movement to curtail the costs of reli
ability. Reis et al [15] propose allowing the user to switch
between levels of reliability at the software level. That way,
unimportant applications like web-surfing will not pay the
costs, whereas banking applications would. We focus on al
lowing lower reliability within an application, as opposed to
across applications. Kumar et al [16] reduce the resources
necessary to redundantly execute instructions.

All of the above work is complementary to ours. Since
we have shown that applications are more tolerant to er
rors than previously believed, we could selectively apply
the techniques described above.

The theoretical foundations of this work are based in ap
proximate signal processing [17] and flexible computation
[18] which deals with systematic tradeoff between accuracy
of results and the utilization of resources in their implemen
tation. Video compression is a good application of approx
imate signal processing because the human perception sys
tem can inherently tolerate some inaccuracy. This can be
exploited to create a hierarchy of importance in terms of
the underlying data, in terms of the impact on distortion
caused by a particular piece of data, which in turn can be
used to make dynamic resource trade-offs, which in the case
of video is typically the bit rate. Li and Yeung examine such
error tolerance for two multimedia and two decision support

References

[1] N.Cohen, T.S.Sriram, N.Leland, D.Moyer, S.Butler,
and R.Flatley, “Soft error considerations for deep-
submicron cmos circuit applications,” IEEE Interna
tional Electron Devices Meeting: Technical Digest,
pp. 315–319, December 1999.

[2] J.F.Ziegler, “Terrestrial cosmic rays,” IBM Journal of
Research and Development, vol. 40, pp. 19–39, Jan
uary 1996.

[3] J. V. Neumann, “Probabilistic logic and the synthe
sis of reliable organisms from unreliable components,”
Automata Studies, Ann. of Math. Studies, vol. 34,
pp. 43–98, 1956.

[4] D. D. Thaker, F. Impens, I. L. Chuang, R. Amirthara
jah, and F. T. Chong, “Recursive TMR: Scaling
fault tolerance in the nanoscale era,” IEEE Des. Test,
vol. 22, no. 4, pp. 298–305, 2005.

[5] D. D. Thaker, D. Franklin, V. Akella, and F. T. Chong,
“Reliability requirements of control, address, and data
operations in error-tolerant applications,” Proceedings
of the Workshop on Architectural Reliability, held in
conjunction with MICRO-2005, December 2005.

[6] J. L. Henning, “SPEC CPU2000: measuring CPU per
formance in the new millennium,” IEEE Computer,
vol. 33, July 2000.

148

8

[7] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, [19] X. Li and D. Yeung, “Exploiting soft computing for
T. Mudge, and T. Brown, “Mibench: A free, com
mercially representative embedded benchmark suite,”
pp. 3–14, December 2001.

[8] www.imagemagick.com

[9] S. S. Muchnick, Advanced Compiler Design and Im
plementation. Morgan Kaufmann, 1997.

[10] D. C. Burger and T. M. Austin, “The simplescalar tool
set, version 2.0,” Technical Report CS-TR-1997-1342,
University of Wisconsin, Madison, June 1997.

[11] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers,
“The case for lifetime reliability-aware micropro
cessors,” Proceedings of the 31st Annual Interna
tional Symposium on Computer Architecture, Decem
ber 2004.

[12] C. T. Weaver, J. Emer, S. S. Mukherjee, and S. K.
Reinhardt, “Reducing the soft-error rate of a high-
performance microprocessor,” IEEE Micro, vol. 24,
pp. 30–37, Nov 2004.

[13] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt,
and T. Austin, “A systematic methodology to com
pute the architectural vulnerability factors for a high-
performance microprocessor,” in MICRO 36: Pro
ceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture, (Washington, DC,
USA), p. 29, IEEE Computer Society, 2003.

[14] T. M. Austin, D. Blaauw, T. N. Mudge, and K. Flaut
ner, “Making typical silicon matter with razor.,” IEEE
Computer, vol. 37, no. 3, pp. 57–65, 2004.

[15] G. A. Reis,	 J. Chang, N. Vachharajani, R. Ran
gan, D. I. August, and S. S. Mukherjee, “Software
controlled fault tolerance,” ACM Transactions on Ar
chitecture and Code Optimization, vol. 2, pp. 366–
396, Dec 2005.

[16] S. Kumar and A. Aggarwal, “Reduced resource re
dundancy for concurrent error detection techniques
in high performance microprocessors,” in HPCA ’06:
Proceedings of International Conference on High Per
formance Computer Architecture, IEEE Computer So
ciety, 2006.

[17] S. Nawab, A. Oppenheim, A. Chandrakasan, J. Wino-
grad, and J. Ludwig, “Approximate signal process
ing,” 1997.

[18] E.J.Horvitz, “Reasoning about beliefs and actions
under computational resource constraints,” Third-
Workhsop on Uncertainty in Artificial Intelligence,
pp. 429–439, 1987.

increased fault tolerance,” in Proceedings of the 2006
Workshop on Architectural Support for Gigascale In
tegration, June 2006.

149

