1,006 research outputs found

    The Value Effect and the Market For Chinese Stocks

    Get PDF
    A long literature in empirical finance has isolated both a value and a small-capitalization effect in asset pricing. This study confirms the existence of these style effects both in new types of equity indexes and in the stocks of Chinese companies traded in international markets. We then present a new nonparametric method of portfolio construction that enables investors to extract the predictive power of these style effects, without diluting their efficacy through an unintended weighting distribution that closely resembles capitalization weighting. We then develop a simple method to isolate periods where style tilts are likely to be particularly effective.China, stock market, capitalization, stock portolios, equity index

    Proportional-Integral-Plus Control Strategy of an Intelligent Excavator

    Get PDF
    This article considers the application of Proportional-Integral-Plus (PIP) control to the Lancaster University Computerised Intelligent Excavator (LUCIE), which is being developed to dig foundation trenches on a building site. Previous work using LUCIE was based on the ubiquitous PI/PID control algorithm, tuned on-line, and implemented in a rather ad hoc manner. By contrast, the present research utilizes new hardware and advanced model-based control system design methods to improve the joint control and so provide smoother, more accurate movement of the excavator arm. In this article, a novel nonlinear simulation model of the system is developed for MATLAB/SIMULINK, allowing for straightforward refinement of the control algorithm and initial evaluation. The PIP controller is compared with a conventionally tuned PID algorithm, with the final designs implemented on-line for the control of dipper angle. The simulated responses and preliminary implementation results demonstrate the feasibility of the approach

    Efficient operators for studying higher partial waves

    Full text link
    An extended multi-hadron operator is developed to extract the spectra of irreducible representations in the finite volume. The irreducible representations of the cubic group are projected using a coordinate-space operator. The correlation function of this operator is computationally efficient to extract lattice spectra. In particular, this new formulation only requires propagator inversions from two distinct locations, at fixed physical separation. We perform a proof-of-principle study on a 243×4824^3 \times 48 lattice volume with mπ900m_\pi\approx 900~MeV by isolating the spectra of A1+A^+_1, E+E^+ and T2+T^+_2 of the ππ\pi\pi system with isospin-2 in the rest frame.Comment: 8 pages, 3 figures, Contribution to the conference Lattice201

    Structure of the Nucleon and its Excitations

    Full text link
    The structure of the ground state nucleon and its finite-volume excitations are examined from three different perspectives. Using new techniques to extract the relativistic components of the nucleon wave function, the node structure of both the upper and lower components of the nucleon wave function are illustrated. A non-trivial role for gluonic components is manifest. In the second approach, the parity-expanded variational analysis (PEVA) technique is utilised to isolate states at finite momenta, enabling a novel examination of the electric and magnetic form factors of nucleon excitations. Here the magnetic form factors of low-lying odd-parity nucleons are particularly interesting. Finally, the structure of the nucleon spectrum is examined in a Hamiltonian effective field theory analysis incorporating recent lattice-QCD determinations of low-lying two-particle scattering-state energies in the finite volume. The Roper resonance of Nature is observed to originate from multi-particle coupled-channel interactions while the first radial excitation of the nucleon sits much higher at approximately 1.9 GeV.Comment: 8 pages, 4 figures. Proceedings of the 35th International Symposium on Lattice Field Theory (Lattice 2017), 18 - 24 June 2017, Granada, Spai

    Hamiltonian effective field theory study of the N(1440)\mathbf{N^*(1440)} resonance in lattice QCD

    Full text link
    We examine the phase shifts and inelasticities associated with the N(1440)N^*(1440) Roper resonance and connect these infinite-volume observables to the finite-volume spectrum of lattice QCD using Hamiltonian effective field theory. We explore three hypotheses for the structure of the Roper resonance. All three hypotheses are able to describe the scattering data well. In the third hypothesis the Roper resonance couples the low-lying bare basis-state component associated with the ground state nucleon with the virtual meson-baryon contributions. Here the non-trivial superpositions of the meson-baryon scattering states are complemented by bare basis-state components explaining their observation in contemporary lattice QCD calculations. The merit of this scenario lies in its ability to not only describe the observed nucleon energy levels in large-volume lattice QCD simulations but also explain why other low-lying states have been missed in today's lattice QCD results for the nucleon spectrum.Comment: 14 pages, 14 figures; version to be published in Phys. Rev.

    Soil Moisture Sensor

    Get PDF
    Since water is an important resource and not all communities around the world can afford to be liberal with their water needs; it has become important to use available water as efficiently as possible, especially in agriculture. For the purpose of reducing the overwatering of crops, an unattended ground moisture sensor can be implemented to measure the moisture level in the soil surrounding the plants. This will allow a farmer to know when to water or stop watering crops. For convenience, the moisture data information should be transmitted wirelessly to the user. The design of an unattended ground moisture sensor and wireless communication/user interface system is discussed. The sensor design consists of a Wheatstone bridge for determining the resistance of the soil, followed by a differential amplifier for converting the measured resistance into a voltage. This is done because there exists a correlation between moisture and resistance. This voltage is interpreted by a micro controller as moisture data and sent wirelessly to a Lora receiver. The receiver then relays that information to the user via a mobile or web based app

    Hamiltonian effective field theory study of the N(1535)\mathbf{N^*(1535)} resonance in lattice QCD

    Full text link
    Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying JP=1/2J^P=1/2^- nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.Comment: 5 pages, 2 figures; version published in Phys. Rev. Let

    Songbird organotypic culture as an in vitro model for interrogating sparse sequencing networks

    Get PDF
    Sparse sequences of neuronal activity are fundamental features of neural circuit computation; however, the underlying homeostatic mechanisms remain poorly understood. To approach these questions, we have developed a method for cellular-resolution imaging in organotypic cultures of the adult zebra finch brain, including portions of the intact song circuit. These in vitro networks can survive for weeks, and display mature neuron morphologies. Neurons within the organotypic slices exhibit a diversity of spontaneous and pharmacologically induced activity that can be easily monitored using the genetically encoded calcium indicator GCaMP6. In this study, we primarily focus on the classic song sequence generator HVC and the surrounding areas. We describe proof of concept experiments including physiological, optical, and pharmacological manipulation of these exposed networks. This method may allow the cellular rules underlying sparse, stereotyped neural sequencing to be examined with new degrees of experimental control
    corecore