94 research outputs found
A comparison of linear approaches to filter out environmental effects in structural health monitoring
This paper discusses the possibility of using the Mahalanobis squared-distance to perform robust novelty detection in the presence of important environmental variability in a multivariate feature vector. By performing an eigenvalue decomposition of the covariance matrix used to compute that distance, it is shown that the Mahalanobis squared-distance can be written as the sum of independent terms which result from a transformation from the feature vector space to a space of independent variables. In general, especially when the size of the features vector is large, there are dominant eigenvalues and eigenvectors associated with the covariance matrix, so that a set of principal components can be defined. Because the associated eigenvalues are high, their contribution to the Mahalanobis squared-distance is low, while the contribution of the other components is high due to the low value of the associated eigenvalues. This analysis shows that the Mahalanobis distance naturally filters out the variability in the training data. This property can be used to remove the effect of the environment in damage detection, in much the same way as two other established techniques, principal component analysis and factor analysis. The three techniques are compared here using real experimental data from a wooden bridge for which the feature vector consists in eigenfrequencies and modeshapes collected under changing environmental conditions, as well as damaged conditions simulated with an added mass. The results confirm the similarity between the three techniques and the ability to filter out environmental effects, while keeping a high sensitivity to structural changes. The results also show that even after filtering out the environmental effects, the normality assumption cannot be made for the residual feature vector. An alternative is demonstrated here based on extreme value statistics which results in a much better threshold which avoids false positives in the training data, while allowing detection of all damaged cases
Deployment of contact-based ultrasonic thickness measurements using over-actuated UAVs
Unmanned Aerial Vehicles (UAVs) are increasingly being utilized for the structural health assessment of on and off-shore structures. Visual inspection is the usual methodology for acquiring data from these structures, but there is often a need for contact based structural measurements, for example to assess local thickness on corroding structures. Conventional UAV platform dynamics have not traditionally allowed for such contact measurements. The limited dynamic control afforded by fixed plane rotor UAVs means that forward thrust (to apply contact forces for surface transduction) is only possible by tilting the whole platform, thus taking the UAV into a non-stationary state and limiting positional accuracy. An over-actuated UAV platform (with fully vectored thrust capability) may provide the required contact force for such thickness measurements whilst maintaining stable hovering next to the structure. The authors herein present a contact based ultrasonic thickness measurement technique, whereby an ultrasonic wheel probe deployed from a UAV was used to make single point and scanned measurements across a surface to provide a set of local thickness measurements. A 5 MHz, dry-coupled, dual-element, ultrasonic wheel probe is used to measure the thickness of an aluminum sample plate with thicknesses of 8.2 mm, 4.5 mm and 3.2 mm, and a precision stepped calibration block with size from 31.5 mm to 17.5 mm in steps of 1 mm, then steps of 0.1 mm down to 16.5 mm over a total length of 500 mm. The thickness resolution obtainable from the ultrasonic wheel probe was typically 0.1 mm, and the positional accuracy attained from the over-actuated deployment platform was 16.6 mm when performing single point measurements
La théorie variation des rayons complexes pour le calcul des vibrations moyennes fréquences
A new approach named the "Variational Theory of Complex Rays" is introduced for computing the vibrations of elastic structures weakly damped in the medium frequency range. Emphasis has been placed here on the most fundamental aspects. The effective quantities (elastic energy, vibration intensity ...) are evaluated after computing a small system of equations which does not derive from a finite element dicretization of the structure. Numerical examples related to plates show the interest and the possibilities ofthe VTRC
On the use of the Mahalanobis squared-distance to filter out environmental effects in structural health monitoring
This paper discusses the possibility of using the Mahalanobis squared-distance to perform robust novelty detection in the presence of important variability in a multivariate feature vector. The application of interest is vibration-based structural health monitoring with a focus on data-based damage detection. For this application, the Mahalanobis distance can be used to detect novelty using a multivariate feature vector extracted from vibration measurements from a structure at regular intervals during its lifetime. One of the major problems is that changing environmental conditions induce large variability in the feature vector under normal condition, which usually prevents detection of smaller variations due to damage. In this paper, it is shown that including the variability due to the environment in the training data used to define the Mahalanobis distance results in very efficient filtering of the environmental effects while keeping the sensitivity to structural changes
Experimental localization of small damages using modal filters
info:eu-repo/semantics/publishe
A comparison of a posteriori Constitutive Relation Errors for damping updating
info:eu-repo/semantics/publishe
- …