150,806 research outputs found

    Residual entropy in a model for the unfolding of single polymer chains

    Full text link
    We study the unfolding of a single polymer chain due to an external force. We use a simplified model which allows to perform all calculations in closed form without assuming a Boltzmann-Gibbs form for the equilibrium distribution. Temperature is then defined by calculating the Legendre transform of the entropy under certain constraints. The application of the model is limited to flexible polymers. It exhibits a gradual transition from compact globule to rod. The boundary line between these two phases shows reentrant behavior. This behavior is explained by the presence of residual entropy.Comment: 5 pages, 4 figures, extended version of arXiv:cond-mat/061225

    Is your article EV-TRACKed?

    Get PDF
    The EV-TRACK knowledgebase is developed to cope with the need for transparency and rigour to increase reproducibility and facilitate standardization of extracellular vesicle (EV) research. The knowledgebase includes a checklist for authors and editors intended to improve the transparency of methodological aspects of EV experiments, allows queries and meta-analysis of EV experiments and keeps track of the current state of the art. Widespread implementation by the EV research community is key to its success

    Numerical simulation of grain-size effects on creep crack growth by means of grain elements

    Get PDF
    The effect of grain size on creep crack growth is investigated by means of a numerical technique in which the actual crack growth process is simulated in a discrete manner by grain elements and grain boundary elements. The grain elements account for the creep deformation of individual grains, while grain boundary cavitation and sliding are accounted for by grain boundary elements between the grains. This grain-element technique allows for an independent study of multiple grain size effects: a (direct) size effect related to the specimen size/grain size ratio or an (indirect) effect related to the effect of grain size on nucleation rate and creep resistance. Preliminary numerical results are presented concerning the direct effect of grain size, which predict that the crack growth rate and brittleness increase with grain size.

    Microstructural modelling of creep crack growth from a blunted crack

    Get PDF
    The effect of crack tip blunting on the initial stages of creep crack growth is investigated by means of a planar microstructural model in which grains are represented discretely. The actual linking-up process of discrete microcracks with the macroscopic crack is simulated, with full account of the underlying physical mechanisms such as the nucleation, growth and coalescence of grain boundary cavities accompanied by grain boundary sliding. Results are presented for C*-controlled mode I crack growth under small-scale damage conditions. Particular attention is focused on creep constrained vs. unconstrained growth. Also the effect of grain boundary shear stresses on linking-up is investigated through shear-modified nucleation and growth models. The computations show a general trend that while an initially sharp crack tends to propagate away from the original crack plane, crack tip blunting reduces the crack growth direction. Under unconstrained conditions this can be partly rationalized by the strain rate and facet stress distribution corresponding to steady-state creep.

    Current-induced torques in textured Rashba ferromagnets

    Full text link
    In systems with small spin-orbit coupling, current-induced torques on the magnetization require inhomogeneous magnetization textures. For large spin-orbit coupling, such torques exist even without gradients in the magnetization direction. Here, we consider current-induced torques in ferromagnetic metals with both Rashba spin-orbit coupling and inhomogeneous magnetization. We first phenomenologically construct all torques that are allowed by the symmetries of the system, to first order in magnetization-direction gradients and electric field. Second, we use a Boltzmann approach to calculate the spin torques that arise to second order in the spin-orbit coupling. We apply our results to current-driven domain walls and find that the domain-wall mobility is strongly affected by torques that result from the interplay between spin-orbit coupling and inhomogeneity of the magnetization texture.Comment: 9 pages, 3 figure

    Nitrogen removal during summer and winter in a primary facultative WSP pond: preliminary findings from 15N-labelled ammonium tracking techniques

    Get PDF
    Nitrogen removal mechanisms and pathways within WSP have been the focus of much research over the last 30 years. Debates and theories postulated continue to refine our knowledge regarding the cycling and removal pathways for this important nutrient, but a succinct answer has yet to be provided for holistic nitrogen removal. In this study, two experimental runs using labelled 15N as a stable isotope tracking technique were conducted on a pilot-scale primary facultative WSP in the UK; one in the summer of 2006, and the other in the winter of 2007. An ammonium chloride (15NH4Cl) spike was prepared as the slug for each experimental run, which also contained rhodamine WT to act as a dye tracer enabling the hydraulic characteristics of the pond to be mapped. Initial results from the study are reported here, and findings are compared and contrasted. Preliminary findings reveal that a greater proportion of 15N is incorporated into the algal biomass by assimilation and subsequent release as soluble organic nitrogen in summer than in winter. 15N ammonium passes out of the system much sooner and in a much higher proportion in the winter than in summer
    corecore