39 research outputs found

    Psychological Stress-Induced, IDO1-Dependent Tryptophan Catabolism: Implications on Immunosuppression in Mice and Humans

    Get PDF
    It is increasingly recognized that psychological stress influences inflammatory responses and mood. Here, we investigated whether psychological stress (combined acoustic and restraint stress) activates the tryptophan (Trp) catabolizing enzyme indoleamine 2,3-dioxygenase 1(IDO1) and thereby alters the immune homeostasis and behavior in mice. We measured IDO1 mRNA expression and plasma levels of Trp catabolites after a single 2-h stress session and in repeatedly stressed (4.5-days stress, 2-h twice a day) naïve BALB/c mice. A role of cytokines in acute stress-induced IDO1 activation was studied after IFNγ and TNFα blockade and in IDO1−/− mice. RU486 and 1-Methyl-L-tryptophan (1-MT) were used to study role of glucocorticoids and IDO1 on Trp depletion in altering the immune and behavioral response in repeatedly stressed animals. Clinical relevance was addressed by analyzing IDO1 activity in patients expecting abdominal surgery. Acute stress increased the IDO1 mRNA expression in brain, lung, spleen and Peyer's patches (max. 14.1±4.9-fold in brain 6-h after stress) and resulted in a transient depletion of Trp (−25.2±6.6%) and serotonin (−27.3±4.6%) from the plasma measured 6-h after stress while kynurenine levels increased 6-h later (11.2±9.3%). IDO1 mRNA up-regulation was blocked by anti-TNFα and anti-IFNγ treatment. Continuous IDO1 blockade by 1-MT but not RU486 treatment normalized the anti-bacterial defense and attenuated increased IL-10 inducibility in splenocytes after repeated stress as it reduced the loss of body weight and behavioral alterations. Moreover, kynurenic acid which remained increased in 1-MT treated repeatedly stressed mice was identified to reduce the TNFα inducibility of splenocytes in vitro and in vivo. Thus, psychological stress stimulates cytokine-driven IDO1 activation and Trp depletion which seems to have a central role for developing stress-induced immunosuppression and behavioral alteration. Since patients showed Trp catabolism already prior to surgery, IDO is also a possible target enzyme for humans modulating immune homeostasis and mood

    Stress exposure alters brain mRNA expression of the genes involved in insulin signalling, an effect modified by a high fat/high fructose diet and cinnamon supplement

    Get PDF
    In occidental societies, high fat and high sugar diets often coincide with episodes of stress. The association is likely to modify brain energy control. Brain insulin signalling is rarely studied in stressed individuals consuming high fat diets. Furthermore the effects of cinnamon supplement are not known in these conditions. Therefore, we exposed rats, over a 12-week period, to a control (C) or a high fat/high fructose (HF/HFr) diet that induces peripheral insulin resistance. A cinnamon supplement (C+CN and HF/HFr +CN) was added or not. After diet exposure, one group of rats was exposed to a 30-min restraint followed by a 10-min open-field test, their combination featuring a moderate stressor, the other rats staying unstressed in their home cages. The insulin signalling in hippocampus and frontal cortex was studied through the mRNA expression of the following genes: insulin receptor (Ir), insulin receptor substrate (Irs1), glucose transporters (Glut1 and Glut3), glycogen synthase (Gys1) and their modulators, Akt1 and Pten. In C rats, stress enhanced the expression of Ir, Irs1, Glut1, Gys1 and Akt1 mRNA. In C+CN rats, stress induced an increase in Pten but a decrease in Gys1 mRNA expression. In HF/HFr rats, stress was associated with an increase in Pten mRNA expression. In HF/HFr+CN rats, stress increased Pten mRNA expression but also decreased Gys1 mRNA expression. This suggests that a single moderate stress favours energy refilling mechanisms, an effect blunted by a previous HF/HFr diet and cinnamon supplement

    Platform-Level Multiple Sensors Simulation Based on Multi-agent Interactions

    No full text

    A Systematic Methodology for Adaptive Systems in Open Environments

    No full text

    ROLES IN AGENT-ORIENTED MODELING

    No full text

    Inhibition of BCL11B expression leads to apoptosis of malignant but not normal mature T cells

    No full text
    The B-cell chronic lymphocytic leukemia (CLL)/lymphoma 11B gene (BCL11B) encodes a Krüppel-like zinc-finger protein, which plays a crucial role in thymopoiesis and has been associated with hematopoietic malignancies. It was hypothesized that BCL11B may act as a tumor-suppressor gene, but its precise function has not yet been elucidated. Here, we demonstrate that the survival of human T-cell leukemia and lymphoma cell lines is critically dependent on Bcl11b. Suppression of Bcl11b by RNA interference selectively induced apoptosis in transformed T cells whereas normal mature T cells remained unaffected. The apoptosis was effected by simultaneous activation of death receptor-mediated and intrinsic apoptotic pathways, most likely as a result of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) upregulation and suppression of the Bcl-xL antiapoptotic protein. Our data indicate an antiapoptotic function of Bcl11b. The resistance of normal mature T lymphocytes to Bcl11b suppression-induced apoptosis and restricted expression pattern make it an attractive therapeutic target in T-cell malignancies

    Communities of autonomous units for pickup and delivery vehicle routing

    No full text
    Abstract. Communities of autonomous units are being developed for formal specification and semantic analysis of systems of interacting and mobile components. The autonomous units of a community are rulebased, self-controlled, goal-driven, and operate and move in a common environment. We employ communities of autonomous units to model the dynamic pickup and delivery problem with the general idea to demonstrate their suitability for a range of logistic tasks.
    corecore