22 research outputs found

    nuclear astrophysics deep underground

    Get PDF
    Cross sections of nuclear reactions relevant for astrophysics are crucial ingredients to understand the energy generation inside stars and the synthesis of the elements. At astrophysical energies, nuclear cross sections are often too small to be measured in laboratories on the Earth surface, where the signal would be overwhelmed by the cosmic-ray induced background. LUNA is a unique Nuclear Astrophysics experiment located at Gran Sasso National Laboratories. The extremely low background achieved at LUNA allows to measure nuclear cross sections directly at the energies of astrophysical interest. Over the years, many crucial reactions involved in stellar hydrogen burning as well as Big Bang nucleosynthesis have been measured at LUNA. The present contribution provides an overview on underground Nuclear Astrophysics as well as the latest results and future perspectives of the LUNA experiment

    Low-energy resonances in the 22Ne(p,γ)23Na reaction directly observed at LUNA

    Get PDF
    The 22Ne(p,γ)23Na reaction is involved in the hydrogen burning neon-sodium (NeNa) cycle. This cycle is active in asymptotic giant branch stars (AGB) as well as in novae. In the Gamow window temperature range (30MK < T < 420 MK corresponding to proton center of mass energies 40 keV < E < 430 keV), the 22Ne(p,γ)23Na reaction rate is highly uncertain because of the contribution of a large number of resonances never measured directly. A study of this reaction has been carried out at the Laboratory for Underground Nuclear Astrophysics (LUNA), in the Gran Sasso National Laboratory, using a windowless gas target and two high-purity germanium detectors. Several resonances have been observed for the first time in a direct experiment

    Strengths of the resonances at 436, 479, 639, 661, and 1279 keV in the 22^{22}Ne(p,γ\gamma)23^{23}Na reaction

    Full text link
    The 22^{22}Ne(p,γ\gamma)23^{23}Na reaction is included in the neon-sodium cycle of hydrogen burning. A number of narrow resonances in the Gamow window dominates the thermonuclear reaction rate. Several resonance strengths are only poorly known. As a result, the 22^{22}Ne(p,γ\gamma)23^{23}Na thermonuclear reaction rate is the most uncertain rate of the cycle. Here, a new experimental study of the strengths of the resonances at 436, 479, 639, 661, and 1279 keV proton beam energy is reported. The data have been obtained using a tantalum target implanted with 22^{22}Ne. The strengths ωγ\omega\gamma of the resonances at 436, 639, and 661 keV have been determined with a relative approach, using the 479 and 1279 keV resonances for normalization. Subsequently, the ratio of resonance strengths of the 479 and 1279 keV resonances was determined, improving the precision of these two standards. The new data are consistent with, but more precise than, the literature with the exception of the resonance at 661 keV, which is found to be less intense by one order of magnitude. In addition, improved branching ratios have been determined for the gamma decay of the resonances at 436, 479, and 639 keV.Comment: Final version, now using the Kelly et al. (2015) data [15] for normalization; 10 pages, 7 figures, 3 table

    Underground Measurements of Nuclear Reaction Cross-Sections Relevant to AGB Stars

    Get PDF
    none14noneAnanna, Chemseddine; Barile, Francesco; Boeltzig, Axel; Bruno, Carlo Giulio; Cavanna, Francesca; Ciani, Giovanni Francesco; Compagnucci, Alessandro; Csedreki, Laszlo; Depalo, Rosanna; Ferraro, Federico; Masha, Eliana; Piatti, Denise; Rapagnani, David; Skowronski, JakubAnanna, Chemseddine; Barile, Francesco; Boeltzig, Axel; Bruno, Carlo Giulio; Cavanna, Francesca; Ciani, Giovanni Francesco; Compagnucci, Alessandro; Csedreki, Laszlo; Depalo, Rosanna; Ferraro, Federico; Masha, Eliana; Piatti, Denise; Rapagnani, David; Skowronski, Jaku

    New direct measurement of the 10 B(p,α) 7 Be reaction with the activation technique

    Get PDF
    Boron plays an important role in astrophysics and, together with lithium and beryllium, is a probe of stellar structure during the pre-main sequence and main-sequence phases. In this context, the 10 B(p, α ) 7 Be reaction is of particular interest.The literature data show discrepancies in the energy range between 100 keV and 2 MeV. This also poses a normalization problem for indirect data obtained with the Trojan Horse Method.A new measurement of the 10 B(p, α ) 7 Be reaction cross section was performed at Legnaro National Laboratories (LNL). At LNL, the cross section was determined with the activation technique by measuring the activated samples at a low-background counting facility. The analysis of that experiment is now complete and the results are here presented

    22Ne and 23Na ejecta from intermediate-mass stars: The impact of the new LUNA rate for 22Ne(p,gamma)23Na

    Get PDF
    We investigate the impact of the new LUNA rate for the nuclear reaction 22^{22}Ne(p,γ)23(p,\gamma)^{23}Na on the chemical ejecta of intermediate-mass stars, with particular focus on the thermally-pulsing asymptotic giant branch (TP-AGB) stars that experience hot-bottom burning. To this aim we use the PARSEC and COLIBRI codes to compute the complete evolution, from the pre-main sequence up to the termination of the TP-AGB phase, of a set of stellar models with initial masses in the range 3.0M6.0M3.0\,M_{\odot} - 6.0\,M_{\odot}, and metallicities Zi=0.0005Z_{\rm i}=0.0005, Zi=0.006Z_{\rm i}=0.006, and Zi=0.014Z_{\rm i} = 0.014. We find that the new LUNA measures have much reduced the nuclear uncertainties of the 22^{22}Ne and 23^{23}Na AGB ejecta, which drop from factors of 10\simeq 10 to only a factor of few for the lowest metallicity models. Relying on the most recent estimations for the destruction rate of 23^{23}Na, the uncertainties that still affect the 22^{22}Ne and 23^{23}Na AGB ejecta are mainly dominated by evolutionary aspects (efficiency of mass-loss, third dredge-up, convection). Finally, we discuss how the LUNA results impact on the hypothesis that invokes massive AGB stars as the main agents of the observed O-Na anti-correlation in Galactic globular clusters. We derive quantitative indications on the efficiencies of key physical processes (mass loss, third dredge-up, sodium destruction) in order to simultaneously reproduce both the Na-rich, O-poor extreme of the anti-correlation, and the observational constraints on the CNO abundance. Results for the corresponding chemical ejecta are made publicly available

    The 10B(p,α)7Be S(E)-factor from 5 keV to 1.5 MeV using the Trojan Horse Method

    Get PDF
    The 10 B(p, α ) 7 Be reaction is the main responsible for the 10 B destruction in stellar interior [1]. In such environments this p-capture process occurs at a Gamow energy of 10 keV and takes places mainly through a resonant state (Ex = 8.701 MeV) of the compound 11 C nucleus. Thus a resonance right in the region of the Gamow peak is expected to significantly influence the behavior of the astrophysical S(E)-factor. The 10 B(p, α ) 7 Be reaction was studied via the Trojan Horse Method (THM) applied to the 2 H( 10 B, α 7 Be)n in order to extract the astrophysical S(E)-factor in a wide energy range from 5 keV to 1.5 MeV

    New direct measurement of the 10

    Get PDF
    Boron plays an important role in astrophysics and, together with lithium and beryllium, is a probe of stellar structure during the pre-main sequence and main-sequence phases. In this context, the 10B(p,α)7 Be reaction is of particular interest. The literature data show discrepancies in the energy range between 100 keV and 2 MeV. This also poses a normalization problem for indirect data obtained with the Trojan Horse Method. A new measurement of the 10B(p,α)7 Be reaction cross section was performed at Legnaro National Laboratories (LNL). At LNL, the cross section was determined with the activation technique by measuring the activated samples at a low-background counting facility. The analysis of that experiment is now complete and the results are here presented
    corecore