4 research outputs found

    Hydrogen storage for micro-grid application: a framework for ranking fuel cell technologies based on technical parameters

    Get PDF
    To securely address energy shortage and various environmental issues attributed to fossil fuel, the adoption of renewable energy is growing across the globe. However, wind and solar which form the bulk of the emerging renewable energy for micro-grid applications are intermittent and need energy storage device for backup. Due to its environmentally friendly nature, the use of hydrogen as storage mechanism is now being explored for micro-grid applications. However, due to the various technical criteria attributed to various fuel cell (FC) technologies used for hydrogen production, selecting the most suitable alternative remains a challenge. This study uses evaluation based on distance from average solution, a multicriteria decision making tool to rank FC technologies that can be used to produce of hydrogen energy storage in micro-grid applications. The analysis was based on 4 FC technologies and 6 technical criteria. The results of the study show that the most preferred FC technology for micro-grid application is the polymeric electrolyte membrane while the least preferred is molten carbonate FC. It is expected that future analysis would explore the inclusion of socio-economic criteria in the evaluation of the most preferred FC technology for micro-grid application

    Experimental Determination of Penetration Loss into Multi-Storey Buildings at 900 and 1800MHz

    Get PDF
    This study presents building pentration loss into and around multi-storey buildings at 900 and 1800MHz based on experimental data obtained through drive test, using Test Mobile System (TEMS) investigation tools. The received signal level was measured inside and outside three buildings; the Senate building of the University of Lagos (B1), Mike Adenuga Towers (B2) and the Sapetro Towers (B3) located in Victoria Island, Lagos Nigeria. The building penetration loss (BPL) was derived from measurements, and the average and standard deviations of the BPL were computed. Results showed that the average BPL of 17.0dB and 13.8dB obtained from building B1 at 900 and 1800MHz, respectively, are comparatively higher than those of buildings B2 and B3. The standard deviation of the BPL shows an increase from 5.2dB at 900MHz to 7.8dB at 1800MHz for building B1, whereas it fell drastically from 8.65dB at 900MHz to 1.40dB at 1800MHz for B2, and a similar behaviour in B1 is seen for building B3 where it rises sharply from 1.55dB at 900MHz to 6.55dB at 1800MHz. This is in agreement with the general trend of increasing penetration loss with increase in frequency except for building B2 where an anomaly is observed. In order to examine the correlation between the measured and the predicted BPL, cubic regression was used to fit a third order polynomial to the measured BPL. Overrall, the fitted models could find useful applications in the design of novel and robust BPL models for modern multi-floored buildings

    Feasibility analysis of an off-grid photovoltaic-battery energy system for a farm facility

    Get PDF
    Renewable energy plays a very important role in the improvement and promotion of environmental sustainability in agricultural-related activities. This paper evaluates the techno-economic and environmental benefits of deploying photovoltaic (PV)- battery systems in a livestock farmhouse. For the energy requirements of the farm to be determined, a walkthrough energy audit is conducted on the farmhouse. The farm selected for this study is located in southern Nigeria. The National Renewable Energy Laboratory’s Hybrid Optimization Modeling for Electric Renewable (HOMER) software was adapted for the purpose of the techno-economic analysis. It is found that a standalone PV/battery-powered system in farmhouse applications has higher economic viability when compared to its diesel-powered counterparts in terms of total net present cost (TNPC). A saving of 48% is achievable over the TNPC and Cost of Energy with zero emissions. The results obtained show the numerous benefits of replacing diesel generators with renewable energy sources such as PV-battery systems in farming applications
    corecore