2,897 research outputs found

    Children in Immigrant Families -- The U.S. and 50 States: National Origins, Language, and Early Education

    Get PDF
    Draws on new results of U.S. Census 2000 data to focus on children in immigrant families, highlighting the proportion, dispersion, national origins, language, and early education of children in newcomer families nationwide and in various states

    The response of the inner magnetosphere to the trailing edges of high‐speed solar‐wind streams

    Full text link
    The effects of the leading edge stream interface of high‐speed solar‐wind streams (HSSs) upon the Earth’s magnetosphere have been extensively documented. The arrival of HSSs leads to significant changes in the plasmasphere, plasma sheet, ring current, and radiation belts, during the evolution from slow solar wind to persistent fast solar wind. Studies have also documented effects in the lower ionosphere and the neutral atmosphere. However, only cursory attention has been paid to the trailing‐edge stream interface during the transition back from fast solar wind to slow solar wind. Here we report on the statistical changes that occur in the plasmasphere, plasma sheet, ring current, and electron radiation belt during the passage of the trailing‐edge stream interface of HSSs, when the magnetosphere is in most respects in an extremely quiescent state. Counterintuitively, the peak flux of ~1 MeV electrons is observed to occur at this interface. In contrast, other regions of the magnetosphere demonstrate extremely quiet conditions. As with the leading‐edge stream interface, the occurrence of the trailing‐edge stream interface has a periodicity of 27 days, and hence, understanding the changes that occur in the magnetosphere during the passage of trailing edges of HSSs can lead to improved forecasting and predictability of the magnetosphere as a system.Key PointsThe electron radiation belt flux peaks during the passage of HSS trailing‐edge stream interfaceCounterintuitively, the peak flux occurs when the magnetosphere is in its most calm configurationThe hazard from so‐called killer electrons is maximized; at the same time, hazard from spacecraft surface charging is minimizedPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136314/1/jgra53192.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136314/2/jgra53192_am.pd

    Poisson-Boltzmann Theory of Charged Colloids: Limits of the Cell Model for Salty Suspensions

    Full text link
    Thermodynamic properties of charge-stabilised colloidal suspensions are commonly modeled by implementing the mean-field Poisson-Boltzmann (PB) theory within a cell model. This approach models a bulk system by a single macroion, together with counterions and salt ions, confined to a symmetrically shaped, electroneutral cell. While easing solution of the nonlinear PB equation, the cell model neglects microion-induced correlations between macroions, precluding modeling of macroion ordering phenomena. An alternative approach, avoiding artificial constraints of cell geometry, maps a macroion-microion mixture onto a one-component model of pseudo-macroions governed by effective interactions. In practice, effective-interaction models are usually based on linear screening approximations, which can accurately describe nonlinear screening only by incorporating an effective (renormalized) macroion charge. Combining charge renormalization and linearized PB theories, in both the cell model and an effective-interaction (cell-free) model, we compute osmotic pressures of highly charged colloids and monovalent microions over a range of concentrations. By comparing predictions with primitive model simulation data for salt-free suspensions, and with predictions of nonlinear PB theory for salty suspensions, we chart the limits of both the cell model and linear-screening approximations in modeling bulk thermodynamic properties. Up to moderately strong electrostatic couplings, the cell model proves accurate in predicting osmotic pressures of deionized suspensions. With increasing salt concentration, however, the relative contribution of macroion interactions grows, leading predictions of the cell and effective-interaction models to deviate. No evidence is found for a liquid-vapour phase instability driven by monovalent microions. These results may guide applications of PB theory to soft materials.Comment: 27 pages, 5 figures, special issue of Journal of Physics: Condensed Matter on "Classical density functional theory methods in soft and hard matter

    Equation of state of charged colloidal suspensions and its dependence on the thermodynamic route

    Full text link
    The thermodynamic properties of highly charged colloidal suspensions in contact with a salt reservoir are investigated in the framework of the Renormalized Jellium Model (RJM). It is found that the equation of state is very sensitive to the particular thermodynamic route used to obtain it. Specifically, the osmotic pressure calculated within the RJM using the contact value theorem can be very different from the pressure calculated using the Kirkwood-Buff fluctuation relations. On the other hand, Monte Carlo (MC) simulations show that both the effective pair potentials and the correlation functions are accurately predicted by the RJM. It is suggested that the lack of self-consistency in the thermodynamics of the RJM is a result of neglected electrostatic correlations between the counterions and coions

    Power Balance in Aerodynamic Flows

    Get PDF
    A control volume analysis of the compressible viscous flow about an aircraft is performed,including integrated propulsors and flow control systems. In contrast to most past analyses which have focused on forces and momentum flow, in particular thrust and drag, the present analysis focuses on mechanical power and kinetic energy flow. The result is a clear identification and quantification of all the power sources, power sinks, and their interactions which are present in any aerodynamic flow. The formulation does not require any separate definitions of thrust and drag, and hence it is especially useful for analysis and optimization of aerodynamic configurations which have tightly integrated propulsion and boundary layer control systems

    Phase Separation in Charge-Stabilized Colloidal Suspensions: Influence of Nonlinear Screening

    Full text link
    The phase behavior of charge-stabilized colloidal suspensions is modeled by a combination of response theory for electrostatic interparticle interactions and variational theory for free energies. Integrating out degrees of freedom of the microions (counterions, salt ions), the macroion-microion mixture is mapped onto a one-component system governed by effective macroion interactions. Linear response of microions to the electrostatic potential of the macroions results in a screened-Coulomb (Yukawa) effective pair potential and a one-body volume energy, while nonlinear response modifies the effective interactions [A. R. Denton, \PR E {\bf 70}, 031404 (2004)]. The volume energy and effective pair potential are taken as input to a variational free energy, based on thermodynamic perturbation theory. For both linear and first-order nonlinear effective interactions, a coexistence analysis applied to aqueous suspensions of highly charged macroions and monovalent microions yields bulk separation of macroion-rich and macroion-poor phases below a critical salt concentration, in qualitative agreement with predictions of related linearized theories [R. van Roij, M. Dijkstra, and J.-P. Hansen, \PR E {\bf 59}, 2010 (1999); P. B. Warren, \JCP {\bf 112}, 4683 (2000)]. It is concluded that nonlinear screening can modify phase behavior but does not necessarily suppress bulk phase separation of deionized suspensions.Comment: 14 pages of text + 9 figure
    • 

    corecore