22 research outputs found

    Biallelic mutations in DYNC2LI1 are a rare cause of Ellis-van Creveld syndrome

    Get PDF
    Ellis van Creveld syndrome (EvC) is a chondral and ectodermal dysplasia caused by biallelic mutations in the EVC, EVC2 and WDR35 genes. A proportion of cases with clinical diagnosis of EvC, however, do not carry mutations in these genes. To identify the genetic cause of EvC in a cohort of mutation-negative patients, exome sequencing was undertaken in a family with three affected members, and mutation scanning of a panel of clinically and functionally relevant genes was performed in 24 additional subjects with features fitting/overlapping EvC. Compound heterozygosity for the c.2T>C (p.Met1?) and c.662C>T (p.Thr221Ile) variants in DYNC2LI1, which encodes a component of the intraflagellar transport-related dynein-2 complex previously found mutated in other short-rib thoracic dysplasias, was identified in the three affected members of the first family. Targeted resequencing detected compound heterozygosity for the same missense variant and a frameshift change (p.Val141*) in two siblings with EvC from a second family, while a newborn with a more severe phenotype carried two DYNC2LI1 truncating variants. Our findings indicate that DYNC2LI1 mutations are associated with a wider clinical spectrum than previously appreciated, including EvC, with the severity of the phenotype likely depending on the extent of defective DYNC2LI1 function

    Delineating the psychiatric and behavioral phenotype of recurrent 2q13 deletions and duplications

    Get PDF
    Recurrent deletions and duplications at the 2q13 locus have been associated with developmental delay (DD) and dysmorphisms. We aimed to undertake detailed clinical characterization of individuals with 2q13 copy number variations (CNVs), with a focus on behavioral and psychiatric phenotypes. Participants were recruited via the Unique chromosomal disorder support group, U.K. National Health Service Regional Genetics Centres, and the DatabasE of genomiC varIation and Phenotype in Humans using Ensembl Resources (DECIPHER) database. A review of published 2q13 patient case reports was undertaken to enable combined phenotypic analysis. We present a new case series of 2q13 CNV carriers (21 deletion, 4 duplication) and the largest ever combined analysis with data from published studies, making a total of 54 deletion and 23 duplication carriers. DD/intellectual disabilities was identified in the majority of carriers (79% deletion, 70% duplication), although in the new cases 52% had an IQ in the borderline or normal range. Despite the median age of the new cases being only 9 years, 64% had a clinical psychiatric diagnosis. Combined analysis found attention deficit hyperactivity disorder (ADHD) to be the most frequent diagnosis (48% deletion, 60% duplication), followed by autism spectrum disorders (33% deletion, 17% duplication). Aggressive (33%) and self-injurious behaviors (33%) were also identified in the new cases. CNVs at 2q13 are typically associated with DD with mildly impaired intelligence, and a high rate of childhood psychiatric diagnosesparticularly ADHD. We have further characterized the clinical phenotype related to imbalances of the 2q13 region and identified it as a region of interest for the neurobiological investigation of ADHD

    POU3F3-related disorder: Defining the phenotype and expanding the molecular spectrum

    Get PDF
    POU3F3 variants cause developmental delay, behavioral problems, hypotonia and dysmorphic features. We investigated the phenotypic and genetic landscape, and genotype-phenotype correlations in individuals with POU3F3-related disorders. We recruited unpublished individuals with POU3F3 variants through international collaborations and obtained updated clinical data on previously published individuals. Trio exome sequencing or single exome sequencing followed by segregation analysis were performed in the novel cohort. Functional effects of missense variants were investigated with 3D protein modeling. We included 28 individuals (5 previously published) from 26 families carrying POU3F3 variants; 23 de novo and one inherited from an affected parent. Median age at study inclusion was 7.4 years. All had developmental delay mainly affecting speech, behavioral difficulties, psychiatric comorbidities and dysmorphisms. Additional features included gastrointestinal comorbidities, hearing loss, ophthalmological anomalies, epilepsy, sleep disturbances and joint hypermobility. Autism, hearing and eye comorbidities, dysmorphisms were more common in individuals with truncating variants, whereas epilepsy was only associated with missense variants. In silico structural modeling predicted that all (likely) pathogenic variants destabilize the DNA-binding region of POU3F3. Our study refined the phenotypic and genetic landscape of POU3F3-related disorders, it reports the functional properties of the identified pathogenic variants, and delineates some genotype-phenotype correlations

    Spliceosome malfunction causes neurodevelopmental disorders with overlapping features

    Get PDF
    Pre-mRNA splicing is a highly coordinated process. While its dysregulation has been linked to neurological deficits, our understanding of the underlying molecular and cellular mechanisms remains limited. We implicated pathogenic variants in U2AF2 and PRPF19, encoding spliceosome subunits in neurodevelopmental disorders (NDDs), by identifying 46 unrelated individuals with 23 de novo U2AF2 missense variants (including 7 recurrent variants in 30 individuals) and 6 individuals with de novo PRPF19 variants. Eight U2AF2 variants dysregulated splicing of a model substrate. Neuritogenesis was reduced in human neurons differentiated from human pluripotent stem cells carrying two U2AF2 hyper-recurrent variants. Neural loss of function (LoF) of the Drosophila orthologs U2af50 and Prp19 led to lethality, abnormal mushroom body (MB) patterning, and social deficits, which were differentially rescued by wild-type and mutant U2AF2 or PRPF19. Transcriptome profiling revealed splicing substrates or effectors (including Rbfox1, a third splicing factor), which rescued MB defects in U2af50deficient flies. Upon reanalysis of negative clinical exomes followed by data sharing, we further identified 6 patients with NDD who carried RBFOX1 missense variants which, by in vitro testing, showed LoF. Our study implicates 3 splicing factors as NDD-causative genes and establishes a genetic network with hierarchy underlying human brain development and function

    POGZ‐related epilepsy: Case report and review of the literature

    No full text
    POGZ (# 614787) encodes a multidomain nuclear protein involved in transcriptional regulation and its defective function has been recently associated with a syndromic neurodevelopmental disorder, known as White-Sutton syndrome (# 616364). While originally epileptic seizures were unreported, it seems that epilepsy represents a recurrent feature in affected subjects. Few data, however, are available on electroclinical features of POGZ-related epilepsy. We report a 5-year-old girl with a de novo inactivating POGZ mutation with a complex neurological phenotype characterized by hypotonia, severe developmental delay, and paroxysmal epileptic and nonepileptic events. Comparing this patient with the previously reported nine cases exhibiting epilepsy as associated feature, we detected that epilepsy onset is mostly during infancy (1-4 years of age), with both focal and generalized seizures. EEGs reveal that epileptic abnormalities mainly are localized in the frontal regions, and seizure control might be reached with one or multiple antiepileptic drugs. Besides dysmorphic features and other comorbidities (microcephaly, intellectual disability, absent speech, sensorineural hearing loss, and autistic spectrum disorder) major brain MR features include cortical and cerebellar atrophy, delayed myelination, and brainstem hypoplasia. Although the small number of patients reported, we were able to delineate primary electroclinical epileptic phenotype related to POGZ mutations. This would be crucial for an early identification and management of the condition

    BRF1 mutations alter RNA polymerase III-dependent transcription and cause neurodevelopmental anomalies

    Get PDF
    RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of bif1 in zebraflsh embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III-related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development
    corecore