193 research outputs found

    An operative approach to address severe genu valgum deformity in the Ellis-van Creveld syndrome

    Get PDF
    BACKGROUND: The genu valgum deformity seen in the Ellis-van Creveld syndrome is one of the most severe angular deformities seen in any orthopaedic condition. It is likely a combination of a primary genetic-based dysplasia of the lateral portion of the tibial plateau combined with severe soft-tissue contractures that tether the tibia into valgus deformations. Progressive weight-bearing induces changes, accumulating with growth, acting on the initially distorted and valgus-angulated proximal tibia, worsening the deformity with skeletal maturation. The purpose of this study is to present a relatively large case series of a very rare condition that describes a surgical technique to correct the severe valgus deformity in the Ellis-van Creveld syndrome by combining extensive soft-tissue release with bony realignment. METHODS: 1. Complete proximal to distal surgical decompression of the peroneal nerve. 2. Radical release and mobilization of the severe quadriceps contracture and iliotibial band contracture. 3. Distal lateral hamstring lengthening/tenotomy and lateral collateral ligament release. 4. Proximal and distal realignment of the subluxed/dislocated patella, medial and lateral retinacular release, vastus medialis advancement, patellar chondroplasty, medial patellofemoral ligament plication, and distal patellar realignment by Roux-Goldthwait technique or patellar tendon transfer with tibial tubercle relocation. 5. Proximal tibial varus osteotomy with partial fibulectomy and anterior compartment release. 6. Occasionally, distal femoral osteotomy. RESULTS: In all cases, the combination of radical soft-tissue release, patellar realignment and bony osteotomy resulted in 10° or less of genu valgum at the time of surgical correction. Complications of surgery included three patients (five limbs) with knee stiffness that was successfully manipulated, one peroneal nerve palsy, one wound slough and hematoma requiring a skin graft, and one pseudoarthrosis requiring removal of hardware and repeat fixation. At last follow-up, radiographic correction of no more than 20° of genu valgum was maintained in all but four patients (four limbs). Two patients (three limbs) had or currently require revision surgery due to recurrence of the deformity. CONCLUSION: The operative approach presented in this study has resulted in correction of the severe genu valgum deformity in Ellis-van Creveld syndrome to 10° or less of genu valgum at the time of surgery. Although not an outcomes study, a correction of no more than 20° genu valgum has been maintained in many of the cases included in the study. Further clinical follow-up is still warranted. LEVEL OF EVIDENCE: IV

    Biomechanical evaluation of immediate stability with rectangular versus cylindrical interbody cages in stabilization of the lumbar spine

    Get PDF
    BACKGROUND: Recent cadaver studies show stability against axial rotation with a cylindrical cage is marginally superior to a rectangular cage. The purpose of this biomechanical study in cadaver spine was to evaluate the stability of a new rectangular titanium cage design, which has teeth similar to the threads of cylindrical cages to engage the endplates. METHODS: Ten motion segments (five L2-3, five L4-5) were tested. From each cadaver spine, one motion segment was fixed with a pair of cylindrical cages (BAK, Sulzer Medica) and the other with paired rectangular cages (Rotafix, Corin Spinal). Each specimen was tested in an unconstrained state, after cage introduction and after additional posterior translaminar screw fixation. The range of motion (ROM) in flexion-extension, lateral bending, and rotation was tested in a materials testing machine, with +/- 5 Nm cyclical load over 10 sec per cycle; data from the third cycle was captured for analysis. RESULTS: ROM in all directions was significantly reduced (p < 0.05) with both types of cages. There was no significant difference in reduction of ROM in flexion-extension (p = 0.6) and rotation (p = 0.92) between the two cage groups, but stability in lateral bending was marginally superior with the rectangular cages (p = 0.11). Additional posterior fixation further reduced the ROM significantly (p < 0.05) in most directions in both cage groups, but did not show any difference between the cage groups. CONCLUSIONS: There was no significant difference in immediate stability in any direction between the threaded cylindrical cage and the new design of the rectangular cage with endplate teeth

    Biomechanical effects of polyaxial pedicle screw fixation on the lumbosacral segments with an anterior interbody cage support

    Get PDF
    BACKGROUND: Lumbosacral fusion is a relatively common procedure that is used in the management of an unstable spine. The anterior interbody cage has been involved to enhance the stability of a pedicle screw construct used at the lumbosacral junction. Biomechanical differences between polyaxial and monoaxial pedicle screws linked with various rod contours were investigated to analyze the respective effects on overall construct stiffness, cage strain, rod strain, and contact ratios at the vertebra-cage junction. METHODS: A synthetic model composed of two ultrahigh molecular weight polyethylene blocks was used with four titanium pedicle screws (two in each block) and two rods fixation to build the spinal construct along with an anterior interbody cage support. For each pair of the construct fixed with polyaxial or monoaxial screws, the linked rods were set at four configurations to simulate 0°, 7°, 14°, and 21° lordosis on the sagittal plane, and a compressive load of 300 N was applied. Strain gauges were attached to the posterior surface of the cage and to the central area of the left connecting rod. Also, the contact area between the block and the cage was measured using prescale Fuji super low pressure film for compression, flexion, lateral bending and torsion tests. RESULTS: Our main findings in the experiments with an anterior interbody cage support are as follows: 1) large segmental lordosis can decrease the stiffness of monoaxial pedicle screws constructs; 2) polyaxial screws rather than monoaxial screws combined with the cage fixation provide higher compression and flexion stiffness in 21° segmental lordosis; 3) polyaxial screws enhance the contact surface of the cage in 21° segmental lordosis. CONCLUSION: Polyaxial screws system used in conjunction with anterior cage support yields higher contact ratio, compression and flexion stiffness of spinal constructs than monoaxial screws system does in the same model when the spinal segment is set at large lordotic angles. Polyaxial pedicle screw fixation performs nearly equal percentages of vertebra-cage contact among all constructs with different sagittal alignments, therefore enhances the stabilization effect of interbody cages in the lumbosacral area

    Embryonic stem cells in scaffold-free three-dimensional cell culture: osteogenic differentiation and bone generation

    Get PDF
    Extracorporeal formation of mineralized bone-like tissue is still an unsolved challenge in tissue engineering. Embryonic stem cells may open up new therapeutic options for the future and should be an interesting model for the analysis of fetal organogenesis. Here we describe a technique for culturing embryonic stem cells (ESCs) in the absence of artificial scaffolds which generated mineralized miromasses. Embryonic stem cells were harvested and osteogenic differentiation was stimulated by the addition of dexamethasone, ascorbic acid, and ß-glycerolphosphate (DAG). After three days of cultivation microspheres were formed. These spherical three-dimensional cell units showed a peripheral zone consisting of densely packed cell layers surrounded by minerals that were embedded in the extracellular matrix. Alizarine red staining confirmed evidence of mineralization after 10 days of DAG stimulation in the stimulated but not in the control group. Transmission electron microscopy demonstrated scorching crystallites and collagenous fibrils as early indication of bone formation. These extracellular structures resembled hydroxyl apatite-like crystals as demonstrated by distinct diffraction patterns using electron diffraction analysis. The micromass culture technique is an appropriate model to form three-dimensional bone-like micro-units without the need for an underlying scaffold. Further studies will have to show whether the technique is applicable also to pluripotent stem cells of different origin

    Genome-Wide Analysis Reveals a Major Role in Cell Fate Maintenance and an Unexpected Role in Endoreduplication for the Drosophila FoxA Gene Fork Head

    Get PDF
    Transcription factors drive organogenesis, from the initiation of cell fate decisions to the maintenance and implementation of these decisions. The Drosophila embryonic salivary gland provides an excellent platform for unraveling the underlying transcriptional networks of organ development because Drosophila is relatively unencumbered by significant genetic redundancy. The highly conserved FoxA family transcription factors are essential for various aspects of organogenesis in all animals that have been studied. Here, we explore the role of the single Drosophila FoxA protein Fork head (Fkh) in salivary gland organogenesis using two genome-wide strategies. A large-scale in situ hybridization analysis reveals a major role for Fkh in maintaining the salivary gland fate decision and controlling salivary gland physiological activity, in addition to its previously known roles in morphogenesis and survival. The majority of salivary gland genes (59%) are affected by fkh loss, mainly at later stages of salivary gland development. We show that global expression of Fkh cannot drive ectopic salivary gland formation. Thus, unlike the worm FoxA protein PHA-4, Fkh does not function to specify cell fate. In addition, Fkh only indirectly regulates many salivary gland genes, which is also distinct from the role of PHA-4 in organogenesis. Our microarray analyses reveal unexpected roles for Fkh in blocking terminal differentiation and in endoreduplication in the salivary gland and in other Fkh-expressing embryonic tissues. Overall, this study demonstrates an important role for Fkh in determining how an organ preserves its identity throughout development and provides an alternative paradigm for how FoxA proteins function in organogenesis

    Translation and validation of non-English versions of the Ankylosing Spondylitis Quality of Life (ASQOL) questionnaire

    Get PDF
    BACKGROUND: The Ankylosing Spondylitis Quality of Life (ASQOL) questionnaire is a unidimensional, disease-specific measure developed in the UK and the Netherlands. This study describes its adaptation into other languages. METHODS: The UK English ASQOL was translated into US English; Canadian French and English; French; German; Italian; Spanish; and Swedish (dual-panel methods). Cognitive debriefing interviews were conducted with AS patients. Psychometric/scaling properties were assessed using data from two Phase III studies of adalimumab. Baseline and Week-2 data were used to assess test-retest reliability. Validity was determined by correlation of ASQOL with SF-36 and BASFI and by discriminative ability of ASQOL based on disease severity. Item response theory (Rasch model) was used to test ASQOL's scaling properties. RESULTS: Cognitive debriefing showed the new ASQOL versions to be clear, relevant and comprehensive. Sample sizes varied, but were sufficient for: psychometric/scaling assessment for US English and Canadian English; psychometric but not scaling analyses for German; and preliminary evidence of these properties for the remaining languages. Test-retest reliability and Cronbach's alpha coefficients were high: US English (0.85, 0.85), Canadian English (0.87, 0.86), and German (0.77, 0.79). Correlations of ASQOL with SF-36 and BASFI for US English, Canadian English, and German measures were moderate, but ASQOL discriminated between patients based on perceived disease severities (p < 0.01). Results were comparable for the other languages. US English and Canadian English exhibited fit to the Rasch model (non-significant p-values: 0.54, 0.68), confirming unidimensionality. CONCLUSION: The ASQOL was successfully translated into all eight languages. Psychometric properties were excellent for US English, Canadian English, and German, and extremely promising for the other languages

    Arp2/3 complex interactions and actin network turnover in lamellipodia

    Get PDF
    Cell migration is initiated by lamellipodia—membrane-enclosed sheets of cytoplasm containing densely packed actin filament networks. Although the molecular details of network turnover remain obscure, recent work points towards key roles in filament nucleation for Arp2/3 complex and its activator WAVE complex. Here, we combine fluorescence recovery after photobleaching (FRAP) of different lamellipodial components with a new method of data analysis to shed light on the dynamics of actin assembly/disassembly. We show that Arp2/3 complex is incorporated into the network exclusively at the lamellipodium tip, like actin, at sites coincident with WAVE complex accumulation. Capping protein likewise showed a turnover similar to actin and Arp2/3 complex, but was confined to the tip. In contrast, cortactin—another prominent Arp2/3 complex regulator—and ADF/cofilin—previously implicated in driving both filament nucleation and disassembly—were rapidly exchanged throughout the lamellipodium. These results suggest that Arp2/3- and WAVE complex-driven actin filament nucleation at the lamellipodium tip is uncoupled from the activities of both cortactin and cofilin. Network turnover is additionally regulated by the spatially segregated activities of capping protein at the tip and cofilin throughout the mesh

    Roadmap on structured light

    Get PDF
    Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized

    HER-2 overexpression differentially alters transforming growth factor-β responses in luminal versus mesenchymal human breast cancer cells

    Get PDF
    INTRODUCTION: Amplification of the HER-2 receptor tyrosine kinase has been implicated in the pathogenesis and aggressive behavior of approximately 25% of invasive human breast cancers. Clinical and experimental evidence suggest that aberrant HER-2 signaling contributes to tumor initiation and disease progression. Transforming growth factor beta (TGF-β) is the dominant factor opposing growth stimulatory factors and early oncogene activation in many tissues, including the mammary gland. Thus, to better understand the mechanisms by which HER-2 overexpression promotes the early stages of breast cancer, we directly assayed the cellular and molecular effects of TGF-β1 on breast cancer cells in the presence or absence of overexpressed HER-2. METHODS: Cell proliferation assays were used to determine the effect of TGF-β on the growth of breast cancer cells with normal or high level expression of HER-2. Affymetrix microarrays combined with Northern and western blot analysis were used to monitor the transcriptional responses to exogenous TGF-β1 in luminal and mesenchymal-like breast cancer cells. The activity of the core TGF-β signaling pathway was assessed using TGF-β1 binding assays, phospho-specific Smad antibodies, immunofluorescent staining of Smad and Smad DNA binding assays. RESULTS: We demonstrate that cells engineered to over-express HER-2 are resistant to the anti-proliferative effect of TGF-β1. HER-2 overexpression profoundly diminishes the transcriptional responses induced by TGF-β in the luminal MCF-7 breast cancer cell line and prevents target gene induction by a novel mechanism that does not involve the abrogation of Smad nuclear accumulation, DNA binding or changes in c-myc repression. Conversely, HER-2 overexpression in the context of the mesenchymal MDA-MB-231 breast cell line potentiated the TGF-β induced pro-invasive and pro-metastatic gene signature. CONCLUSION: HER-2 overexpression promotes the growth and malignancy of mammary epithelial cells, in part, by conferring resistance to the growth inhibitory effects of TGF-β. In contrast, HER-2 and TGF-β signaling pathways can cooperate to promote especially aggressive disease behavior in the context of a highly invasive breast tumor model
    corecore