4 research outputs found
Translational Modeling of Non-Invasive Electrical Stimulation
Seminal work in the early 2000’s demonstrated the effect of low amplitude non-invasive electrical stimulation in people using neurophysiological measures (motor evoked potentials, MEPs). Clinical applications of transcranial Direct Current Stimulation (tDCS) have since proliferated, though the mechanisms are not fully understood. Efforts to refine the technique to improve results are on-going as are mechanistic studies both in vivo and in vitro. Volume conduction models are being applied to these areas of research, especially in the design and analysis of clinical montages. However, additional research on the parameterization of models remains.
In this dissertation, Finite Element Method (FEM) models of current flow were developed for clinical applications. The first image-derived models of obese subjects were developed to assess the relative impact of fat delineation from skin. Body mass index and more broadly inter-individual differences were considered. The effect of incorporating the meninges was predicted from CAD-based (Computer Aided Design) models before being translated into image-derived head models as an “emulated” CSF conductivity. These predictions were tested in a recently validated database of head models. Multi-scale models of transcutaneous vagus nerve stimulation (tVNS) were developed by coupling image-derived volume conduction models with physiological compartment modeling. The impact of local tissue inhomogeneities on fiber activation were considered
Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models
Background: Transcranial Direct Current Stimulation (tDCS) is a non-invasive, versatile, and safe neuromodulation technology under investigation for the treatment of neuropsychiatric disorders, adjunct to rehabilitation, and cognitive enhancement in healthy adults. Despite promising results, there is variability in responsiveness. One potential source of variability is the intensity of current delivered to the brain which is a function of both the operator controlled tDCS dose (electrode montage and total applied current) and subject specific anatomy. We are interested in both the scale of this variability across anatomical typical adults and methods to normalize inter-individual variation by customizing tDCS dose. Computational FEM simulations are a standard technique to predict brain current flow during tDCS and can be based on subject specific anatomical MRI.
Objective: To investigate this variability, we modeled multiple tDCS montages across three adults (ages 34–41, one female).
Results: Conventional pad stimulation led to diffuse modulation with maximum current flow between the pads across all subjects. There was high current flow directly under the pad for one subject while the location of peak induced cortical current flow was variable. The High-Definition tDCS montage led to current flow restricted to within the ring perimeter across all subjects. The current flow profile across all subjects and montages was influenced by details in cortical gyri/sulci.
Conclusion: This data suggests that subject specific modeling can facilitate consistent and more efficacious tDCS
Non-invasive brain stimulation and computational models in post-stroke aphasic patients: single session of transcranial magnetic stimulation and transcranial direct current stimulation. A randomized clinical trial
<div><p>ABSTRACT CONTEXT AND OBJECTIVE: Patients undergoing the same neuromodulation protocol may present different responses. Computational models may help in understanding such differences. The aims of this study were, firstly, to compare the performance of aphasic patients in naming tasks before and after one session of transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS) and sham, and analyze the results between these neuromodulation techniques; and secondly, through computational model on the cortex and surrounding tissues, to assess current flow distribution and responses among patients who received tDCS and presented different levels of results from naming tasks. DESIGN AND SETTING: Prospective, descriptive, qualitative and quantitative, double blind, randomized and placebo-controlled study conducted at Faculdade de Ciências Médicas da Santa Casa de São Paulo. METHODS: Patients with aphasia received one session of tDCS, TMS or sham stimulation. The time taken to name pictures and the response time were evaluated before and after neuromodulation. Selected patients from the first intervention underwent a computational model stimulation procedure that simulated tDCS. RESULTS: The results did not indicate any statistically significant differences from before to after the stimulation.The computational models showed different current flow distributions. CONCLUSIONS: The present study did not show any statistically significant difference between tDCS, TMS and sham stimulation regarding naming tasks. The patients’responses to the computational model showed different patterns of current distribution.</p></div