127 research outputs found

    Fast ferrous heme-NO oxidation in nitric oxide synthases.

    Get PDF
    International audienceDuring catalysis, the heme in nitric oxide synthase (NOS) binds NO before releasing it to the environment. Oxidation of the NOS ferrous heme-NO complex by O2 is key for catalytic cycling, but the mechanism is unclear. We utilized stopped-flow methods to study the reaction of O2 with ferrous heme-NO complexes of inducible and neuronal NOS enzymes. We found that the reaction does not involve heme-NO dissociation, but instead proceeds by a rapid direct reaction of O2 with the ferrous heme-NO complex. This behavior is novel and may distinguish heme-thiolate enzymes, such as NOS, from related heme proteins

    NO synthase isoforms specifically modify peroxynitrite reactivity

    Get PDF
    International audienceNitric oxide synthases (NOSs) are multi-domain hemothiolate proteins that are the sole source of nitric oxide (NO) in mammals. NOSs can also be a source or a sink for peroxynitrite (PN), an oxidant that is suspected to be involved in numerous physiopathological processes. In a previous study, we showed that the oxygenase domain of the inducible NOS (iNOSoxy) reacts with PN and changes its oxidative reactivity [Maréchal A, Mattioli TA, Stuehr DJ & Santolini J (2007) J Biol Chem 282, 14101-14112]. Here we report a similar analysis on two other NOS isoforms, neuronal NOS (nNOS) and a bacterial NOS-like protein (bsNOS). All NOSs accelerated PN decomposition, with accumulation of a similar heme intermediate. The kinetics of PN decomposition and heme transitions were comparable among NOSs. However, their effects on PN reactivity differ greatly. All isoforms suppressed PN two-electron oxidative activity, but iNOSoxy enhanced PN one-electron oxidation and nitration potencies, the oxygenase domain of nNOS (nNOSoxy) affected them minimally, and bsNOS abolished all PN reactivities. This led to the loss of both NOS and PN decomposition activities for nNOSoxy and iNOSoxy, which may be linked to the reported alterations in their electronic absorption spectra. Bacterial bsNOS was affected to a lesser extent by reaction with PN. We propose that these differences in PN reactivity among NOSs might arise from subtle differences in their heme pockets, and could reflect the physiological specificity of each NOS isoform, ranging from oxidative stress amplification (iNOS) to detoxification (bsNOS)

    Endothelial Nitric Oxide Synthase Oxygenase on Lipid Nanodiscs: A Nano-Assembly Reflecting Native-Like Function of eNOS

    Get PDF
    © 2017 Elsevier Inc. Endothelial nitric oxide synthase (eNOS) is a membrane-anchored enzyme. To highlight the potential role and effect of membrane phospholipids on the structure and activity of eNOS, we have incorporated the recombinant oxygenase subunit of eNOS into lipid nanodiscs. Two different size distribution modes were detected by multi-angle dynamic light scattering both for empty nanodiscs, and nanodiscs-bound eNOSoxy. The calculated hydrodynamic diameter for mode 1 species was 9.0 nm for empty nanodiscs and 9.8 nm for nanodisc bound eNOSoxy. Spectroscopic Griess assay was used to measure the enzymatic activity. Remarkably, the specific activity of nanodisc-bound eNOSoxy is ∼65% lower than the activity of free enzyme. The data shows that the nano-membrane environment affects the catalytic properties of eNOS heme domain

    Charge-Pairing Interactions Control The Conformational Setpoint and Motions of The FMN Domain in Neuronal Nitric Oxide Synthase

    Get PDF
    The NOS (nitric oxide synthase; EC 1.14.13.39) enzymes contain a C-terminal flavoprotein domain [NOSred (reductase domain of NOS)] that binds FAD and FMN, and an N-terminal oxygenase domain that binds haem. Evidence suggests that the FMN-binding domain undergoes large conformational motions to shuttle electrons between the NADPH/FAD-binding domain [FNR (ferredoxin NADP-reductase)] and the oxygenase domain. Previously we have shown that three residues on the FMN domain (Glu(762), Glu(816) and Glu(819)) that make charge-pairing interactions with the FNR help to slow electron flux through nNOSred (neuronal NOSred). In the present study, we show that charge neutralization or reversal at each of these residues alters the setpoint [K-eq(A)], of the NOSred conformational equilibrium to favour the open (FMN-deshielded) conformational state. Moreover, computer simulations of the kinetic traces of cytochrome c reduction by the mutants suggest that they have higher conformational transition rates (1.5-4-fold) and rates of interflavin electron transfer (1.5-2-fold) relative to wild-type nNOSred. We conclude that the three charge-pairing residues on the FMN domain govern electron flux through nNOSred by stabilizing its closed (FMN-shielded) conformational state and by retarding the rate of conformational switching between its open and closed conformations

    Luminescent Ruthenium(II)− and Rhenium(I)−Diimine Wires Bind Nitric Oxide Synthase

    Get PDF
    Ru(II)− and Re(I)−diimine wires bind to the oxygenase domain of inducible nitric oxide synthase (iNOSoxy). In the ruthenium wires, [Ru(L)_2L‘]^(2+), L‘ is a perfluorinated biphenyl bridge connecting 4,4‘-dimethylbipyridine to a bulky hydrophobic group (adamantane, 1), a heme ligand (imidazole, 2), or F (3). 2 binds in the active site of the murine iNOSoxy truncation mutants Δ65 and Δ114, as demonstrated by a shift in the heme Soret from 422 to 426 nm. 1 and 3 also bind Δ65 and Δ114, as evidenced by biphasic luminescence decay kinetics. However, the heme absorption spectrum is not altered in the presence of 1 or 3, and Ru−wire binding is not affected by the presence of tetrahydrobiopterin or arginine. These data suggest that 1 and 3 may instead bind to the distal side of the enzyme at the hydrophobic surface patch thought to interact with the NOS reductase module. Complexes with properties similar to those of the Ru−diimine wires may provide an effective means of NOS inhibition by preventing electron transfer from the reductase module to the oxygenase domain. Rhenium−diimine wires, [Re(CO)_3L_1L_1‘]+, where L_1 is 4,7-dimethylphenanthroline and L_1‘ is a perfluorinated biphenyl bridge connecting a rhenium-ligated imidazole to a distal imidazole (F_8bp-im) (4) or F (F_9bp) (5), also form complexes with Δ114. Binding of 4 shifts the Δ114 heme Soret to 426 nm, demonstrating that the terminal imidazole ligates the heme iron. Steady-state luminescence measurements establish that the 4:Δ114 dissociation constant is 100 ± 80 nM. Re−wire 5 binds Δ114 with a K_d of 5 ± 2 μM, causing partial displacement of water from the heme iron. Our finding that both 4 and 5 bind in the NOS active site suggests novel designs for NOS inhibitors. Importantly, we have demonstrated the power of time-resolved FET measurements in the characterization of small molecule:protein interactions that otherwise would be difficult to observe

    The exchanged EF-hands in calmodulin and troponin C chimeras impair the Ca2+-induced hydrophobicity and alter the interaction with Orai1: a spectroscopic, thermodynamic and kinetic study

    Get PDF
    Background Calmodulin (CaM) plays an important role in Ca2+-dependent signal transduction. Ca2+ binding to CaM triggers a conformational change, forming a hydrophobic patch that is important for target protein recognition. CaM regulates a Ca2+-dependent inactivation process in store-operated Ca2+entry, by interacting Orai1. To understand the relationship between Ca2+-induced hydrophobicity and CaM/Orai interaction, chimera proteins constructed by exchanging EF-hands of CaM with those of Troponin C (TnC) are used as an informative probe to better understand the functionality of each EF-hand. Results ANS was used to assess the context of the induced hydrophobic surface on CaM and chimeras upon Ca2+ binding. The exchanged EF-hands from TnC to CaM resulted in reduced hydrophobicity compared with wild-type CaM. ANS lifetime measurements indicated that there are two types of ANS molecules with rather distinct fluorescence lifetimes, each specifically corresponding to one lobe of CaM or chimeras. Thermodynamic studies indicated the interaction between CaM and a 24-residue peptide corresponding to the CaM-binding domain of Orail1 (Orai-CMBD) is a 1:2 CaM/Orai-CMBD binding, in which each peptide binding yields a similar enthalpy change (ΔH = −5.02 ± 0.13 kcal/mol) and binding affinity (Ka = 8.92 ± 1.03 × 105 M−1). With the exchanged EF1 and EF2, the resulting chimeras noted as CaM(1TnC) and CaM(2TnC), displayed a two sequential binding mode with a one-order weaker binding affinity and lower ΔH than that of CaM, while CaM(3TnC) and CaM(4TnC) had similar binding thermodynamics as CaM. The dissociation rate constant for CaM/Orai-CMBD was determined to be 1.41 ± 0.08 s−1 by rapid kinetics. Stern-Volmer plots of Orai-CMBD Trp76 indicated that the residue is located in a very hydrophobic environment but becomes more solvent accessible when EF1 and EF2 were exchanged. Conclusions Using ANS dye to assess induced hydrophobicity showed that exchanging EFs for all Ca2+-bound chimeras impaired ANS fluorescence and/or binding affinity, consistent with general concepts about the inadequacy of hydrophobic exposure for chimeras. However, such ANS responses exhibited no correlation with the ability to interact with Orai-CMBD. Here, the model of 1:2 binding stoichiometry of CaM/Orai-CMBD established in solution supports the already published crystal structure

    Functional interactions between NADPH oxidase 5 and actin

    Get PDF
    NADPH oxidase 5 (NOX5) is a transmembrane oxidative signaling enzyme which produces superoxide in response to intracellular calcium flux. Increasing evidence indicates that NOX5 is involved in a variety of physiological processes as well as human disease, however, details of NOX5 signaling pathways and targets of NOX5 mediated oxidative modifications remain poorly resolved. Actin dynamics have previously been shown to be modulated by oxidative modification, however, a direct connection to NOX5 expression and activity has not been fully explored. Here we show that NOX5 and actin interact in the cell, and each modulate the activity of the other. Using actin effector molecules jasplakinolide, cytochalasin D and latrunculin A, we show that changes in actin dynamics affect NOX5 superoxide production. In tandem, NOX5 oxidatively modifies actin, and shifts the ratio of filamentous to monomeric actin. Finally, we show that knockdown of NOX5 in the pancreatic cancer cell line PSN-1 impairs cell migration. Together our findings indicate an important link between actin dynamics and oxidative signaling through NOX5

    Distinct Conformational Behaviors of Four Mammalian Dual-Flavin Reductases (Cytochrome P450 Reductase, Methionine Synthase Reductase, Neuronal Nitric Oxide Synthase, Endothelial Nitric Oxide Synthase) Determine Their Unique Catalytic Profiles

    Get PDF
    Multidomain enzymes often rely on large conformational motions to function. However, the conformational setpoints, rates of domain motions and relationships between these parameters and catalytic activity are not well understood. To address this, we determined and compared the conformational setpoints and the rates of conformational switching between closed unreactive and open reactive states in four mammalian diflavin NADPH oxidoreductases that catalyze important biological electron transfer reactions: cytochrome P450 reductase, methionine synthase reductase and endothelial and neuronal nitric oxide synthase. We used stopped-flow spectroscopy, single turnover methods and a kinetic model that relates electron flux through each enzyme to its conformational setpoint and its rates of conformational switching. The results show that the four flavoproteins, when fully-reduced, have a broad range of conformational setpoints (from 12% to 72% open state) and also vary 100-fold with respect to their rates of conformational switching between unreactive closed and reactive open states (cytochrome P450 reductase \u3e neuronal nitric oxide synthase \u3e methionine synthase reductase \u3e endothelial nitric oxide synthase). Furthermore, simulations of the kinetic model could explain how each flavoprotein can support its given rate of electron flux (cytochrome c reductase activity) based on its unique conformational setpoint and switching rates. The present study is the first to quantify these conformational parameters among the diflavin enzymes and suggests how the parameters might be manipulated to speed or slow biological electron flux
    corecore