170 research outputs found

    PRE-binding sites in the MDR of CLL: Potential Tumor Suppressor Regulation

    Get PDF
    Chronic lymphocytic leukemia [CLL] is the most common adult leukemia and is heterogeneous in clinical presentation. CLL cases present with various chromosomal aberrations, including 11q23, 14q32, 17p, and trisomy 12, with the most common abnormality being deletion of 13q14 [1]. Although monoallelic deletion of 13q14 is common, there is a subset of patients who have complete nullisomy at 13q14, a locus that has been hypothesized to contribute to CLL pa thogenesis [2] due to loss of tumor suppressors [DLEU and miR-15a/16-1].We hypothesized that deletion of both copies of 13q14 would lead to uncontrollable proliferation of CLL cells and a poor prognosis. We examined our 13q14 nullisomy for survival, treatment-free survival, lymphocyte doubling time, and the presence of lymphadenopathy. Furthermore, we compared the gene expression profiles between patients with 13q14 monosomy, nullisomy, or normal karyotype. Our results suggest that patients with 13q nullisomy have a higher incidence of bulky lymphadenopathy [16.6% compared to 10% of monosomy patients], a higher frequency of lymphocyte doubling time [27.7% compared to 7.4% of monosomy patients], and a higher rate of needing treatment [50% compared to 18.5% of monosomy patients]. We observed deletion of DLEU1 and HTR2A, consistent with a gene dosage effect, and observed PRE-binding sites on DLEU1. Patients with homozygous deletion of 13q14 had a worse prognosis compared to heterozygotes. Lastly, the DLEU1 locus is a possible “second hit” loss for CLL progression

    Agricultural Pesticide Use and Risk of t(14;18)-Defined Subtypes of Non-Hodgkin Lymphoma

    Get PDF
    Pesticides have been specifically associated with the t(14;18)(q32;q21) chromosomal translocation. To investigate whether the association between pesticides and risk of non-Hodgkin lymphoma (NHL) differs for molecular subtypes of NHL defined by t(14; 18) status, we obtained 175 tumor blocks from case subjects in a population-based case-control study conducted in Nebraska between 1983 and 1986. The t(14;18) was determined by interphase fluorescence in situ hybridization in 172 of 175 tumor blocks. We compared exposures to insecticides, herbicides, fungicides, and fumigants in 65 t(14;18)-positive and 107 t(14;18)-negative case subjects with those among 1432 control subjects. Multivariate polytomous logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Compared with farmers who never used pesticides, the risk of t(14;18)-positive NHL was significantly elevated among farmers who used animal insecticides (OR = 2.6; 95%CI, 1.0-6.9), crop insecticides (OR = 3.0; 95% CI, 1.1-8.2), herbicides (OR = 2.9; 95% CI, 1.1-7.9), and fumigants (OR = 5.0; 95% CI, 1.7-14.5). None of these pesticides were associated with t(14;18)-negative NHL. The risk of t(14;18)-positive NHL associated with insecticides and herbicides increased with longer duration of use. We conclude that insecticides, herbicides, and fumigants were associated with risk of t(14;18)-positive NHL but not t(14;18)-negative NHL. These results suggest that defining subsets of NHL according to t(14;18) status is a useful approach for etiologic research. (Blood. 2006; 108:1363-1369

    Long-Term Outcomes of Autologous Stem Cell Transplantation for Follicular Non-Hodgkin Lymphoma: Effect of Histological Grade and Follicular International Prognostic Index

    Get PDF
    AbstractAlthough results of autologous stem cell transplantation (SCT) for recurrent follicular non-Hodgkin lymphoma (NHL) have been previously reported, the long-term results and evaluation of prognostic factors in a large patient population receiving this therapy are difficult to find in the literature. To address these issues, we evaluated 248 patients with recurrent follicular NHL treated with high-dose chemotherapy and autologous SCT between 7/87 and 6/03. According to the World Health Organization (WHO) classification system, 64 patients (26%) had follicular NHL grade 1 (FL 1), 98 (40%) had FL 2, and 86 (35%) had FL 3. At the time of transplantation, 88 of the patients (35%) had a Follicular Lymphoma International Prognostic Index (FLIPI) score of low risk, 87 (35%) had an intermediate-risk FLIPI score, 37 (15%) had a high-risk FLIPI score, and 36 (15%) had at least 1 missing value, preventing calculation of the FLIPI score. The 5-year overall survival (OS) for all patients was 63%, and the 5-year progression-free survival (PFS) was 44%. In a multivariate analysis, a histological grade of FL 3, a high-risk FLIPI score at the time of transplantation, and having received 3 or more previous chemotherapy regimens were significant factors for predicting a worse OS. In addition, the use of a transplantation regimen including a monoclonal antibody decreased the relative risk of progressive lymphoma. These data suggest that transplantation earlier in the course of the disease for patients with follicular lymphoma with use of a monoclonal antibody–based regimen may lead to improved outcomes

    Autologous hematopoietic stem cell transplantation for mantle cell lymphoma

    Get PDF
    AbstractThis study evaluated the outcomes of patients who underwent high-dose chemotherapy (HDC) and autologous hematopoietic stem cell transplantation (autoHSCT) for mantle cell non-Hodgkin's lymphoma and the effect of clinical and treatment characteristics. The clinical outcome and prognostic factors in 40 patients who underwent HDC and autoHSCT for mantle cell lymphoma between June 1991 and August 1998 were analyzed. With a median follow-up of 24 months for the surviving patients (range, 4-68 months), the 2-year overall survival was 65% and the 2-year event-free survival (EFS) was 36%. In univariate analysis, characteristics predictive of a poor EFS were blastic morphology (P = .019) and the patient having received 3 or more prior chemotherapy regimens (P = .004). In a multivariate analysis, the only factor associated with a poor EFS was the number of prior chemotherapy regimens. Those patients who received 3 or more prior therapies had a 2-year EFS of 0%, and those who received <3 therapies had a 2-year EFS of 45% (P = .004). Patients with mantle cell lymphoma can obtain prolonged EFS with HDC and autoHSCT; however, this strategy for prolonged EFS appears to work optimally in patients who are less heavily pretreated. Whether this therapy will increase the overall survival or EFS in patients receiving transplants in first complete remission will need to be tested in prospective randomized clinical trials.Biol Blood Marrow Transplant 2000;6(6):640-5

    Chronic Lymphocytic Leukemia Cells in a Lymph Node Microenvironment Depict Molecular Signature Associated with an Aggressive Disease

    Get PDF
    Chronic lymphocytic leukemia (CLL) cells survive longer in vivo than in vitro, suggesting that the tissue microenvironment provides prosurvival signals to tumor cells. Primary and secondary lymphoid tissues are involved in the pathogenesis of CLL, and the role of these tissue microenvironments has not been explored completely. To elucidate host-tumor interactions, we performed gene expression profiling (GEP) of purified CLL cells from peripheral blood (PB; n = 20), bone marrow (BM; n = 18), and lymph node (LN; n = 15) and validated key pathway genes by real-time polymerase chain reaction, immunohistochemistry and/or TCL1 trans-genic mice. Gene signatures representing several pathways critical for survival and activation of B cells were altered in CLL cells from different tissue compartments. Molecules associated with the B-cell receptor (BCR), B cell-activating factor/a proliferation-inducing ligand (BAFF/APRIL), nuclear factor (NF)-ÎşB pathway and immune suppression signature were enriched in LN-CLL, suggesting LNs as the primary site for tumor growth. Immune suppression genes may help LN-CLL cells to modulate antigen-presenting and T-cell behavior to suppress antitumor activity. PB CLL cells overexpressed chemokine receptors, and their cognate ligands were enriched in LN and BM, suggesting that a chemokine gradient instructs B cells to migrate toward LN or BM. Of several chemokine ligands, the expression of CCL3 was associated with poor prognostic factors. The BM gene signature was enriched with antiapoptotic, cytoskeleton and adhesion molecules. Interestingly, PB cells from lymphadenopathy patients shared GEP with LN cells. In EÎĽ-TCL1 transgenic mice (the mouse model of the disease), a high percentage of leukemic cells from the lymphoid compartment express key BCR and NF-ÎşB molecules. Together, our findings demonstrate that the lymphoid microenvironment promotes survival, proliferation and progression of CLL cells via chronic activation of BCR, BAFF/APRIL and NF-ÎşB activation while suppressing the immune response

    Regulation of SOX11 expression through CCND1 and STAT3 in mantle cell lymphoma

    Get PDF
    The neural transcription factor SOX11 is usually highly expressed in typical mantle cell lymphoma (MCL), but it is absent in the more indolent form of MCL. Despite being an important diagnostic marker for this hard-to-treat malignancy, the mechanisms of aberrant SOX11 expression are largely unknown. Herein, we describe 2 modes of SOX11 regulation by the cell-cycle regulator cyclin D1 (CCND1) and the signal transducer and activator of transcription 3 (STAT3). We found that ectopic expression of CCND1 in multiple human MCL cell lines resulted in increased SOX11 transcription, which correlated with increased acetylated histones H3K9 and H3K14 (H3K9/14Ac). Increased H3K9/14Ac and SOX11 expression was also observed after histone deacetylase 1 (HDAC1) or HDAC2 was depleted by RNA interference or inhibited by the HDAC inhibitor vorinostat. Mechanistically, we showed that CCND1 interacted with and sequestered HDAC1 and HDAC2 from the SOX11 locus, leading to SOX11 upregulation. Interestingly, our data revealed a potential inverse relationship between phosphorylated Y705 STAT3 and SOX11 expression in MCL cell lines, primary tumors, and patient-derived xenografts. Functionally, inactivation of STAT3 by inhibiting the upstream Janus kinase (JAK) 1 or JAK2 or by STAT3 knockdown was found to increase SOX11 expression, whereas interleukin-21 (IL-21)–induced STAT3 activation or overexpression of the constitutively active form of STAT3 decreased SOX11 expression. In addition, targeting SOX11 directly by RNA interference or indirectly by IL-21 treatment induced toxicity in SOX11^+ MCL cells. Collectively, we demonstrate the involvement of CCND1 and STAT3 in the regulation of SOX11 expression, providing new insights and therapeutic implications in MCL

    Specific secondary genetic alterations in mantle cell lymphoma provide prognostic information independent of the gene expression-based proliferation signature.

    Get PDF
    Purpose To compare the genetic relationship between cyclin D1 - positive and cyclin D1 - negative mantle cell lymphomas (MCLs) and to determine whether specific genetic alterations may add prognostic information to survival prediction based on the proliferation signature of MCLs. Patients and Methods Seventy-one cyclin D1 - positive and six cyclin D1 - negative MCLs previously characterized by gene expression profiling were examined by comparative genomic hybridization (CGH). Results Cyclin D1 - negative MCLs were genetically characterized by gains of 3q, 8q, and 15q, and losses of 1p, 8p23- pter, 9p21- pter, 11q21- q23, and 13q that were also the most common alterations in conventional MCLs. Parallel analysis of CGH aberrations and locus-specific gene expression profiles in cyclin D1 - positive patients showed that chromosomal imbalances had a substantial impact on the expression levels of the genes located in the altered regions. The analysis of prognostic factors revealed that the proliferation signature, the number of chromosomal aberrations, gains of 3q, and losses of 8p, 9p, and 9q predicted survival of MCL patients. A multivariate analysis showed that the gene expression-based proliferation signature was the strongest predictor for shorter survival. However, 3q gains and 9q losses provided prognostic information that was independent of the proliferative activity. Conclusion Cyclin D1 - positive and - negative MCLs share the same secondary genetic aberrations, supporting the concept that they correspond to the same genetic entity. The integration of genetic information on chromosome 3q and 9q alterations into a proliferation signature-based model may improve the ability to predict survival in patients with MCL

    Loss of signalling via Gα13 in germinal center B-cell-derived lymphoma

    Get PDF
    Germinal centre B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) is a common malignancy, yet the signalling pathways that are deregulated and the factors leading to its systemic dissemination are poorly defined1,2. Work in mice showed that sphingosine-1-phosphate receptor-2 (S1PR2), a Gα12 and Gα13 coupled receptor, promotes growth regulation and local confinement of germinal centre B cells3,4. Recent deep sequencing studies of GCB-DLBCL have revealed mutations in many genes in this cancer, including in GNA13 (encoding Gα13) and S1PR2 (refs 5,6, 7). Here we show, using in vitro and in vivo assays, that GCB-DLBCL-associated mutations occurring in S1PR2 frequently disrupt the receptor's Akt and migration inhibitory functions. Gα13-deficient mouse germinal centre B cells and human GCB-DLBCL cells were unable to suppress pAkt and migration in response to S1P, and Gα13-deficient mice developed germinal centre B-cell-derived lymphoma. Germinal centre B cells, unlike most lymphocytes, are tightly confined in lymphoid organs and do not recirculate. Remarkably, deficiency in Gα13, but not S1PR2, led to germinal centre B-cell dissemination into lymph and blood. GCB-DLBCL cell lines frequently carried mutations in the Gα13 effector ARHGEF1, and Arhgef1 deficiency also led to germinal centre B-cell dissemination. The incomplete phenocopy of Gα13- and S1PR2 deficiency led us to discover that P2RY8, an orphan receptor that is mutated in GCB-DLBCL and another germinal centre B-cell-derived malignancy, Burkitt's lymphoma, also represses germinal centre B-cell growth and promotes confinement via Gα13. These findings identify a Gα13-dependent pathway that exerts dual actions in suppressing growth and blocking dissemination of germinal centre B cells that is frequently disrupted in germinal centre B-cell-derived lymphoma

    Genome-wide miRNAprofiling of mantle cell lymphoma reveals a distinct subgroup with poor prognosis

    Get PDF
    miRNA deregulation has been implicated in the pathogenesis of mantle cell lymphoma (MCL). Using a high-throughput quantitative real-time PCR platform, we performed miRNA profiling on cyclin D1–positive MCL (n = 30) and cyclin D1–negative MCL (n =7) and compared them with small lymphocytic leukemia/ lymphoma (n =12), aggressive B-cell lymphomas (n =138), normal B-cell subsets, and stromal cells.We identified a 19-miRNA classifier that included 6 up-regulated miRNAs and 13 down regulated miRNA that was able to distinguish MCL from other aggressive lymphomas. Some of the up-regulated miRNAs are highly expressed in naive B cells. This miRNAclassifier showed consistent results in formalinfixed paraffin-embedded tissues and was able to distinguish cyclin D1–negative MCL from other lymphomas. A 26-miRNA classifier could distinguish MCL from small lymphocytic leukemia/lymphoma, dominated by 23 up-regulated miRNAs in MCL. Unsupervised hierarchical clustering of MCL patients demonstrated a cluster characterized by high expression of miRNAs from the polycistronic miR17-92 cluster and its paralogs, miR-106a-363 and miR-106b-25, and associated with high proliferation gene signature. The other clusters showed enrichment of stroma-associated miRNAs, and also had higher expression of stroma-associated genes. Our clinical outcome analysis in the present study suggested that miRNAs can serve as prognosticators

    Regulation of SOX11 expression through CCND1 and STAT3 in mantle cell lymphoma

    Get PDF
    The neural transcription factor SOX11 is usually highly expressed in typical mantle cell lymphoma (MCL), but it is absent in the more indolent form of MCL. Despite being an important diagnostic marker for this hard-to-treat malignancy, the mechanisms of aberrant SOX11 expression are largely unknown. Herein, we describe 2 modes of SOX11 regulation by the cell-cycle regulator cyclin D1 (CCND1) and the signal transducer and activator of transcription 3 (STAT3). We found that ectopic expression of CCND1 in multiple human MCL cell lines resulted in increased SOX11 transcription, which correlated with increased acetylated histones H3K9 and H3K14 (H3K9/14Ac). Increased H3K9/14Ac and SOX11 expression was also observed after histone deacetylase 1 (HDAC1) or HDAC2 was depleted by RNA interference or inhibited by the HDAC inhibitor vorinostat. Mechanistically, we showed that CCND1 interacted with and sequestered HDAC1 and HDAC2 from the SOX11 locus, leading to SOX11 upregulation. Interestingly, our data revealed a potential inverse relationship between phosphorylated Y705 STAT3 and SOX11 expression in MCL cell lines, primary tumors, and patient-derived xenografts. Functionally, inactivation of STAT3 by inhibiting the upstream Janus kinase (JAK) 1 or JAK2 or by STAT3 knockdown was found to increase SOX11 expression, whereas interleukin-21 (IL-21)–induced STAT3 activation or overexpression of the constitutively active form of STAT3 decreased SOX11 expression. In addition, targeting SOX11 directly by RNA interference or indirectly by IL-21 treatment induced toxicity in SOX11^+ MCL cells. Collectively, we demonstrate the involvement of CCND1 and STAT3 in the regulation of SOX11 expression, providing new insights and therapeutic implications in MCL
    • …
    corecore