4,499 research outputs found

    Studies of Neutrino-Electron Scattering at the Kuo-Sheng Reactor Neutrino Laboratory

    Full text link
    Studies on electron antineutrino-electron elastic scattering were performed using a 200-kg CsI(Tl) scintillating crystal detector array at the Kuo-Sheng Nuclear Power Plant in Taiwan. The measured cross section of R(exp) = [1.00 +- 0.32(stat)]xR(SM) is consistent with the Standard Model expectation and the corresponding weak mixing angle derived is sin2T = 0.24 +- 0.05 (stat). The results are consistent with a destructive interference effect between neutral and charged-currents in this process. Limits on neutrino magnetic moment of mu(nu_(e)) < 2.0 x 10^(-10) mu_(B) at 90% confidence level and on electron antineutrino charge radius of r^(2) < (0.12 +- 2.07)x10^(-32) cm^2 were also derived.Comment: Parallel talk at ICHEP08, Philadelphia, USA, July 2008. 4 pages, LaTex, 4 eps figure

    Final results of nu-e-bar electron scattering cross-section measurements and constraints on new physics

    Full text link
    The nu-e-bar electron elastic scattering cross-section was measured with a CsI(Tl) scintillating crystal detector array with a total mass of 187 kg at the Kuo-Sheng Nuclear Power Station. The detectors were exposed to a reactor nu-e-bar flux of 6.4 X 10^{12} cm^{-2}s^{-1} originated from a core with 2.9 GW thermal power. Using 29882/7369 kg-days of Reactor ON/OFF data, the Standard Model (SM) of electroweak interaction was probed at the 4-momentum transfer range of Q^2 ~ 3 X 10^{-6} GeV^2. A cross-section ratio of R_{expt} = [1.08 +- 0.21(stat) +- 0.16(sys)] X R_{SM} was measured. Constraints on the electroweak parameters (g_V,g_A) were placed, corresponding to a weak mixing angle measurement of \s2tw = [0.251 +- 0.031(stat) +- 0.024(sys)]. Destructive interference in the SM nu-e-bar+e processes was verified. Bounds on neutrino anomalous electromagnetic properties (neutrino magnetic moment and neutrino charge radius), non-standard neutrino interactions, upparticle physics and non-commutative physics were placed. We summarize the experimental details and results, and discuss projected sensitivities with realistic and feasible hardware upgrades.Comment: 4 pages, 4 figures, 2 tables ; To appear in Proceedings of TAUP-2011 Conferenc

    Distortion Minimization in Gaussian Layered Broadcast Coding with Successive Refinement

    Full text link
    A transmitter without channel state information (CSI) wishes to send a delay-limited Gaussian source over a slowly fading channel. The source is coded in superimposed layers, with each layer successively refining the description in the previous one. The receiver decodes the layers that are supported by the channel realization and reconstructs the source up to a distortion. The expected distortion is minimized by optimally allocating the transmit power among the source layers. For two source layers, the allocation is optimal when power is first assigned to the higher layer up to a power ceiling that depends only on the channel fading distribution; all remaining power, if any, is allocated to the lower layer. For convex distortion cost functions with convex constraints, the minimization is formulated as a convex optimization problem. In the limit of a continuum of infinite layers, the minimum expected distortion is given by the solution to a set of linear differential equations in terms of the density of the fading distribution. As the bandwidth ratio b (channel uses per source symbol) tends to zero, the power distribution that minimizes expected distortion converges to the one that maximizes expected capacity. While expected distortion can be improved by acquiring CSI at the transmitter (CSIT) or by increasing diversity from the realization of independent fading paths, at high SNR the performance benefit from diversity exceeds that from CSIT, especially when b is large.Comment: Accepted for publication in IEEE Transactions on Information Theor

    Constraints on Dark Photon from Neutrino-Electron Scattering Experiments

    Full text link
    A possible manifestation of an additional light gauge boson AA^\prime, named as Dark Photon, associated with a group U(1)BLU(1)_{\rm B-L} is studied in neutrino electron scattering experiments. The exclusion plot on the coupling constant gBLg_{\rm B-L} and the dark photon mass MAM_{A^\prime} is obtained. It is shown that contributions of interference term between the dark photon and the Standard Model are important. The interference effects are studied and compared with for data sets from TEXONO, GEMMA, BOREXINO, LSND as well as CHARM II experiments. Our results provide more stringent bounds to some regions of parameter space.Comment: 22 pages, 6 figures, 2 tables, text improved, fig.6 updated, references adde

    Minimum Expected Distortion in Gaussian Layered Broadcast Coding with Successive Refinement

    Full text link
    A transmitter without channel state information (CSI) wishes to send a delay-limited Gaussian source over a slowly fading channel. The source is coded in superimposed layers, with each layer successively refining the description in the previous one. The receiver decodes the layers that are supported by the channel realization and reconstructs the source up to a distortion. In the limit of a continuum of infinite layers, the optimal power distribution that minimizes the expected distortion is given by the solution to a set of linear differential equations in terms of the density of the fading distribution. In the optimal power distribution, as SNR increases, the allocation over the higher layers remains unchanged; rather the extra power is allocated towards the lower layers. On the other hand, as the bandwidth ratio b (channel uses per source symbol) tends to zero, the power distribution that minimizes expected distortion converges to the power distribution that maximizes expected capacity. While expected distortion can be improved by acquiring CSI at the transmitter (CSIT) or by increasing diversity from the realization of independent fading paths, at high SNR the performance benefit from diversity exceeds that from CSIT, especially when b is large.Comment: To appear in the proceedings of the 2007 IEEE International Symposium on Information Theory, Nice, France, June 24-29, 200

    Stuck in the twilight zone? March 2019 municipal elections in Turkey

    Full text link
    After 16 years of Tayyip Erdoğan in power and with almost total control of the bu­reau­cracy and the mainstream media, it has become hard to imagine a Turkey in which he and his party, the Justice and Development Party (AKP), would not win an election. Yet, after a long nail-biter of an election night, Turkey woke up on April 1 to results indicating a major shift: Defying expectations, Turkish voters had delivered a challenge to the dominance of the governing coalition. While this came as a sur­prise to some, it points to growing discontent among voters that was able to find expression through institutional means. This was made possible by various parts of the opposition that ran effective alliance strategies and campaigns as well as the elec­tion-night process. This accomplishment of the opposition, however, does not neces­sarily mean an easy shift to a democratic path in Turkey. Much depends on how various actors in the governing coalition respond to this new picture. (Autorenreferat
    corecore