831 research outputs found

    Mathematical models for investigating the long-term impact of Gyrodactylus salaris infections on Atlantic salmon populations

    Get PDF
    Gyrodactylus salaris Malmberg, 1957, is a notifiable freshwater ecto-parasite that infects both wild and farmed populations of Atlantic salmon (Salmo salar, L.). It has caused catastrophic damage to wild salmon stocks in Norway since its accidental introduction in 1975, reducing salmon density in some rivers by 98% over a period of five years. It is estimated that G. salaris has cost the Norwegian salmon industry more than 500 million EUR. Currently the UK has G. salaris free status under EU law, however, it is believed that if G. salaris emerged in the UK the impact would be similar to that witnessed in Norway. The aim of this thesis is to develop mathematical models that describe the salmon-G. salaris system in order to gain a greater understanding of the possible long-term impact the parasite may have on wild populations of Atlantic salmon in G. salaris-free territories such as the UK. Mathematical models, including deterministic, Leslie matrix and individual based models, were used to investigate the impact of G. salaris on Atlantic salmon at the individual and population level. It is known that the Atlantic strain of Atlantic salmon, examples of which occur naturally in Norway and the UK, does not have any resistance to G. salaris infections and the parasite population is able to quickly grow to epidemic levels. In contrast, the Baltic strain of Atlantic salmon, examples of which occur naturally in Sweden and Russia, exhibits some form of resistance and the parasite is unable to persist. Thus, baseline models were extended to include immunity to infection, a trade-off on salmon reproductive rate, and finally, to consider interactions between populations of G. salaris and multiple strains of salmon exhibiting varying levels of immunity from fully susceptible to resistant. The models proposed predict that in the absence of host resistance or an immune response infections by G. salaris will result in an epidemic followed by the extinction of the salmon host population. Models also predict that if salmon are able to increase their resistance to G. salaris infections through mutations, salmon population recovery after the epidemic is indeed possible within 10-15 years post introduction with low level parasite coexistence. Finally, models also highlight areas where additional information is needed in order to improve predictions and enable the estimation of important parameter values. Model predictions will ultimately be used to assist in future contingency planning against G. salaris outbreaks in the UK and possibly as a basis for future models describing other fish/ecto-parasite systems

    Sociocultural dimensions of tuberculosis: an overview of key concepts

    Get PDF
    Biomedical innovations are unlikely to provide effective and ethical tuberculosis (TB) control measures without complementary social science research. However, a strong interest in interdisciplinary work is often undermined by differences in language and concepts specific to each disciplinary approach. Accordingly, biological and social scientists need to learn how to communicate with each other. This article will outline key concepts relating to TB from medical anthropology and health sociology. Distilling these concepts in an introductory framework is intended to make this material accessible to researchers in laboratory, clinical and fieldwork settings, as well as to encourage more social scientists to engage with TB research among target groups critical for successful programmatic interventions. For pedagogical purposes, the relevant concepts are grouped into three categories: 1) structures and settings, which includes overarching themes such as syndemics, local biologies, medicalisation, structural violence and surveillance; 2) practices and processes, encompassing gender, stigma, taboo, and victim blaming; and 3) experience and enculturation, which includes illness narratives, biographical disruption and dynamic nominalism. By helping to navigate this literature, we hope to foster more cross-disciplinary conversations between qualitative and quantitative researchers. TB, a quintessential social disease, will be controlled more effectively using a multistranded research approach

    High-degeneracy Potts coarsening

    Get PDF
    I examine the fate of a kinetic Potts ferromagnet with a high ground-state degeneracy that undergoes a deep quench to zero-temperature. I consider single spin-flip dynamics on triangular lattices of linear dimension 8 ≀ L ≀ 128 and set the number of spin states q equal to the number of lattice sites L×L. The ground state is the most abundant final state, and is reached with probability ≈ 0.71. Three-hexagon states occur with probability ≈ 0.26, and hexagonal tessellations with more than three clusters form with probabilities of O(10−3 ) or less. Spanning stripe states—where the domain walls run along one of the three lattice directions—appear with probability ≈ 0.03. “Blinker” configurations, which contain perpetually flippable spins, also emerge, but with a probability that is vanishingly small with the system size

    An Assessment of the Net Value of CSP Systems Integrated with Thermal Energy Storage

    Get PDF
    AbstractWithin this study, we evaluate the operational and capacity value—or total system value—for multiple concentrating solar power (CSP)plant configurations under an assumed 33% renewable penetration scenario in California. We calculate the first-year bid price for two CSP plants, including a 2013 molten-salt tower integrated with a conventional Rankine cycle and a hypothetical 2020 molten-salt tower system integrated with an advanced supercritical carbon-dioxide power block. The overall benefit to the regional grid, defined in this study as the net value, is calculated by subtracting the first-year bid price from the total system value.Re--sults of this study indicate a positive net value for a variety of scenarios, depending on technology assumptions and assumed values for natural gas price and tax incentives. We provide results for the 2013 and 2020 CSP configurations as a function of thermal energy storage capacity and solar field size. We provide a sensitivity of these results to natural gas price, which influence the operation value and thus the total system value. We also investigate the sensitivity of the net value to current and anticipated tax incentives

    Pan-European grading scales: lessons from national systems and the ECTS

    Get PDF
    This article assesses the impact of the Bologna Process on the grading schemes of EU member countries. In light of some problems regarding the implementation of the European Credit Transfer system (ECTS), the author proposes further reforms and offers some elements of a unified grading system for European higher education. The author explores the variation among Europe’s grading systems and the resulting lessons learned are shared here. Lastly, this article also argues that principles of justice and fairness, deemed central to academic freedom, are best upheld by the use of a unified grading system at national and European levels

    Topology-controlled potts coarsening

    Get PDF
    We uncover unusual topological features in the long-time relaxation of the q-state kinetic Potts ferromagnet on the triangular lattice that is instantaneously quenched to zero temperature from a zero-magnetization initial state. For q=3, the final state is either the ground state (frequency ≈ 0.75), a frozen three-hexagon state (frequency ≈ 0.16), a two-stripe state (frequency ≈ 0.09), or a three-stripe state (frequency 3

    Anomalous Ising freezing times

    Get PDF
    We measure the relaxation time of a square lattice Ising ferromagnet that is quenched to zero-temperature from supercritical initial conditions. We reveal an anomalous and seemingly overlooked timescale associated with the relaxation to ‘frozen’ two-stripe states. While close to a power law of the form ∌ L^Îœ , we argue this timescale actually grows as L^2 ln L, with L the linear dimension of the system. We uncover the mechanism behind this scaling form by using a synthetic initial condition that replicates the late time ordering of two-stripe states, and subsequently explain it heuristically

    Eliminating latent tuberculosis in low-burden settings: are the principal beneficiaries to be disadvantaged groups or the broader population?

    Get PDF
    Tuberculosis (TB) remains a leading cause of morbidity and mortality worldwide, and the burdens of this disease continue to track prior disadvantage. In order to galvanise a coordinated global response, WHO has recently launched the End TB Campaign that aims to eliminate TB by 2050. Key to this is the introduction of population screening programmes in low-burden settings to identify and treat people who have latent TB infection (LTBI). The defining features of LTBI are: that it is not an active disease but confers an increased risk of disease; the socially disadvantaged are those most in danger and uncertainty persists as to who will be harmed or benefitted from screening-led prophylactic interventions. Systematic screening programmes that include surveillance, case-finding and treatment of asymptomatic individuals inevitably redistribute the risk of harms and the potential for benefits within a population. The extent to which those targeted within such programmes should be exposed to higher levels of risk in the pursuit of individual or community benefits requires careful consideration prior to implementation. As currently construed, it remains unclear who stands to benefit most from how LTBI screening in high-income countries is being organised, and whose health is being prioritised: members of disadvantaged groups or the broader community. Unless the aims of LTBI screening programmes in these settings are made transparent and their prioritisation ethically justified, there is a significant danger that such a targeted intervention will further disadvantage those who have the least capacity to bear the burdens of TB elimination.NHMRC Centre for Research Excellence in TB Control (CRE 1043225)

    Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    Full text link
    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT)
    • 

    corecore