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High-degeneracy Potts coarsening
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I examine the fate of a kinetic Potts ferromagnet with a high ground-state degeneracy that undergoes a
deep quench to zero temperature. I consider single spin-flip dynamics on triangular lattices of linear dimension
8 � L � 128 and set the number of spin states q equal to the number of lattice sites L × L. The ground state is the
most abundant final state, and is reached with probability ≈0.71. Three-hexagon states occur with probability
≈0.26, and hexagonal tessellations with more than three clusters form with probabilities of O(10−3) or less.
Spanning stripe states—where the domain walls run along one of the three lattice directions—appear with
probability ≈0.03. “Blinker” configurations, which contain perpetually flippable spins, also emerge, but with
a probability that is vanishingly small with the system size.
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I. INTRODUCTION

When a kinetic ferromagnet with nonconserved magneti-
zation undergoes a deep quench to zero temperature, the final
states are intriguingly diverse. After the ensuing coarsening
regime, the surviving domain structures compete for dominion
over the final state. Naïvley, one could assume that a single do-
main will ultimately prevail as the ground state is necessarily
reached, but this is far from the truth even in simple models.

In the nearest-neighbor Ising model of linear dimension L,
the ground state is always reached in one dimension [1], yet
never reached in three dimensions [2,3]. In two dimensions,
the situation is markedly richer: only 62% of realizations
proceed directly to the ground state on a timescale of O(L2)
[4,5]. Surprisingly, 34% of trajectories become trapped in
frozen two-stripe states, which are infinitely long-lived and
form on a timescale of O(L2 ln L) [4,6]. The remaining 4% of
instances reach ephemeral diagonal winding configurations,
which ultimately collapse to homogeneity on a timescale of
O(L3.5) [4,5].

The explanation underpinning these final states is an
apparent one-to-one mapping with the equivalent crossing
probabilities of critical continuum percolation [7–9]. Once a
percolating domain structure has formed, the fate of the zero-
temperature Ising model is sealed [7–9]. Percolation and the
domain growth in bi-imensional coarsening have been readily
studied [7–18].

After understanding the fate of the zero-temperature Ising
model, it is natural to consider a system of greater degen-
eracy and to therefore study the dynamics of the q-state
Potts model. Interest in the kinetics of Potts ferromagnets
has been motivated by their utility in understanding coarsen-
ing in soap froths [19–21], magnetic grains [22–25], natural
tilings [26–28], superconductors [29], and magnetic domains
[30,31].

The domain growth in coarsening Potts systems has
been extensively studied and is well understood [32–44].
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The existence of non-ground final states after a zero-
temperature quench was realized in the Potts model before the
equivalent finding in the Ising model [45–47]. Nevertheless,
there is an apparent lack of literature examining the late-time
configurations that persist after a zero-temperature quench. In
fact, there are seemingly only two studies that explicitly focus
on this problem, both of which are in two dimensions [47,48].

On the square lattice with q = 3, several oddities emerge:
the ground state probability is only ≈0.1 [47], and the most
prevalent final states are “frozen” configurations with two
or more surviving spin states [47]. Surprisingly, “blinker”
configurations also emerge, where the system forever wanders
at constant energy [47]. The strangest feature however is that
of “pseudoblinkers”: after exorbitant time periods strongly re-
sembling blinkers, single energy-lowering flips trigger sudden
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FIG. 1. Snapshots of zero-temperature coarsening in a
triangular-lattice Potts ferromagnet of q = L × L = 2500
for realizations reaching (a) ground, (b) two-stripe, and
(c) three-hexagon states. Distinct clusters are labeled by color.
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“energy avalanches”, where the system suddenly declines in
energy and macroscopically reorders [47]. Identifying these
configurations was a nontrivial numerical challenge [47].

On the triangular lattice with q = 3, the ground state
is reached approximately 3/4 of the time, and both three-
hexagon and two-stripe states appear [Figs. 1(a)–1(c)] [48].
Blinkers seem only to occur in small system sizes with q > 4,
and play a negligible role in the dynamics. The disparity
between the fates of the square and triangular lattice Potts
models at zero temperature is surprising considering the affin-
ity in the equivalent Ising models.

The origin of the contrasting fates of the square- and
triangular-lattice Potts models is rooted in the behavior of
so-called “T junctions”. T junctions are formed by the meet-
ing of three domain structures comprised of different spin
types [47]. At the center of the junction, one finds spins
that are trapped in local energy minima that cannot flip. The
square lattice, by virtue of geometry, imposes the restriction
that T junctions are fixed in their spatial location. Thus, the
only way for the system to escape is through some macro-
scopic disruption of the configuration, which is not always
possible [47].

However, on the triangular lattice, the geometrical con-
straint on the location of T junctions is lessened, and the
center of the junctions can move. Consequently, the system
can escape from these configurations [48]. Perhaps the sim-
plicity that emerges on the triangular lattice makes it a better
candidate for one-day achieving the exact computation of
the final states probabilities of the three-state Potts model at
zero-temperature?

Further study of the triangular lattice Potts model is inter-
esting for a number of reasons. In the Ising model, we see
two categories of final state, both of which span the linear
dimension of the system. When we move to the three-state
Potts model, a new topologically distinct final state emerges:
the three-hexagon state. If we increase the degeneracy to
q = 5, blinker configurations, which are another fundamen-
tally different final state, appear. One can therefore ask: are
there other interesting features of the triangular lattice Potts
model that yet remain uncovered? The general behavior of the
final state probabilities at high degeneracies is unknown.

In this manuscript I examine the final state of a zero-
temperature Potts ferromagnet with a high ground-state
degeneracy on the triangular lattice. I explore the special case
where the number of spin states q is equal to the number of
lattice sites L × L, which provides a natural upper bound on
the number of spin states with considering. I detail the model
and simulation method in Sec. II. In Sec. III, I introduce the
final states that emerge and estimate the frequency with which
they occur. In Sec. IV, I examine the number of clusters and
surviving spins states as functions of time, before summariz-
ing my findings in Sec. V.

II. ZERO-TEMPERATURE POTTS MODEL

I consider nearest-neighbor interactions on the triangular
lattice geometry with periodic boundary conditions. I build
the triangular lattice by taking a square lattice of length L and

FIG. 2. Equivalent triangular lattice geometries (a) and (b).

adding diagonal bonds to the North-West and South-East (see
Fig. 2).

I initialize the system by placing each spin in a unique state,
giving q = L × L states in total. The spin states are denoted by
the integers Si ∈ {1, 2, . . . q}. Like spins are said to be aligned
and unlike spins misaligned. The total energy of the system is
given by the Hamiltonian

H = −2J
∑

i, j

[δ(Si, S j ) − 1], (1)

where J > 0 is a ferromagnetic coupling constant, δ(Si, S j ) is
the Kronecker delta, and j indexes the nearest-neighbors of
each Si. Thus, each misaligned neighbor provides an energy
contribution of +2J .

To implement the dynamics, I employ continuous-time
rejection-free kinetic Monte Carlo, where each spin is allowed
to flip once, on average, in a single Monte Carlo time unit
[34,49–51]. This method is equivalent to the standard discrete
time Monte Carlo method, where one allows N = L × L ran-
domly selected spins the chance to flip once in a single time
step [49–51]. I endow the Hamiltonian with zero-temperature
metropolis dynamics: energy lowering and energy conserving
moves are accepted with probability 1, while energy rais-
ing moves are forbidden [34,51]. The choice of dynamics
is relatively flexible so long as one adheres to the principle
of detailled balance, therefore one might also use Glauber
dynamics [51].

The total rate, ri, of spin Si is simply the sum of the transi-
tion probabilities over each of the (q − 1) orientations it may
flip to. Since I use zero-temperature Metropolis dynamics—
where the transition probabilities are 1 or 0—the rate ri is
simply a count of the number of transitions permitted by the
dynamics. Let the total rate in the system be R = ∑

ri. To flip
a spin, I select a site with probability ri/R, draw randomly
from its list of ri permissible transitions, and then flip the
spin. Time advances as �t = − log(u) × (q − 1)/R, where
u ∈ (0, 1) is a uniform random number and 〈− log(u)〉 = 1.

Consider a zero-temperature Potts system with only a sin-
gle active site (see Fig. 3). If each site is allowed to flip once,
on average, in a single time step, and sites with no aligned
neighbors have q − 1 possible transitions, the configuration
in Fig. 3 reaches the ground state in (q − 1) Monte Carlo time
steps. When q = 2, the ground state is reached in a single
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FIG. 3. A realization reaching the ground state at time 〈TG〉.

Monte Carlo time step, and when q = 3, the ground state
is reached in two Monte Carlo time steps, and so on. This
feature significantly encumbers my simulations: say L = 100
and q = L2; the active spin in Fig. 3 will flip O(104) times
before aligning with its neighbours.

An important simplifying feature at zero temperature is
that spins with no aligned neighbors may flip to (q − 1) other
spin states, whereas spins with at least one aligned neighbor
may only flip to align with other neighboring spins. This
consideration is useful when computing ri, particularly at
large q.

III. FINAL STATES

I begin my examination of the final state probabilities with
the ground state case, which I plot in Fig. 4(a). The ground
state is the most abundant final state, and when L = 128 it is
reached with a probability of ≈0.71. The ground state prob-
ability varies nonmonotonically with L, making it difficult to
obtain an asymptotic estimate. The nonmonotonicity in the
ground state probability is not unique to this system: it is also
present in both the Ising model and small q Potts models on
the square and triangular lattice geometries [4,5,47,48].

The next most common final states are three-hexagon
and two-stripe states, which are reached with probabilities
of ≈0.26 and ≈0.03, respectively Fig. 4(b)]. As well as
three-hexagon states, I also find rarer subspecies of hexagonal
tilings containing five, eight, and 12 clusters, examples of
which are shown in Figs. 5(a)–5(c).

Hexagonal configurations with more than three clusters are
much rarer than the three-cluster case; I plot the probability of
finding five-, eight- and 12-hexagon states in Figs. 4(c)–4(d),
showing they are orders of magnitude less abundant than their

(a) (b)

(c) (d)

FIG. 5. Frozen (a) five-, (b) eight-, (c) 12-, and (d) 16-hexagon
states. Each cluster is labeled by color and the lattice size is L = 90.

three-cluster counterparts. I also found a single realization
which reached a 16-hexagon state [see Fig. 5(d)], making it
the rarest of its kind.

The energy of an n-hexagon state depends only on the num-
ber of clusters, and not the individual cluster arrangement.
Consider the three hexagon state in Fig. 1(c). The total length
of interface between the domains is 3L. There are spins on
either side of these interfaces, giving 6L boundary spins. Each
interface spin has two misaligned neighbors giving an energy
contribution of +4J . Consequently, the total energy of any
three-hexagon state is 24L. I extend this reasoning to hexagon
states with more than three clusters to obtain the energies
shown in Table I.

The scarcest final states are blinkers, which are configu-
rations that contain perpetually active sites. “Blinking” spins
flip eternally as they only have energy conserving transitions
available to them. Consider the zoom-in on a blinker config-
uration in Fig. 6. When the spin is aligned with its North and
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FIG. 4. Probability of reaching: (a) the ground state; (b) a three-hexagon and two-stripe state; (c) a five-hexagon state; (d) a 12- and
eight-hexagon state. The data are based on 3 × 105 realizations.
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TABLE I. Energies of n-hexagon final states. Note: each bond is
counted twice.

n Interface length Interface spins Energy

3 3L 6L 24L
5 4L 8L 32L
8 5L 10L 40L

12 6L 12L 48L
16 7L 14L 56L

Northwest neighbors, it can only flip to align with its South
and South-east neighbors, and vice versa. It can never align
with its East or West neighbors without raising its energy,
which is forbidden at zero temperature.

In small q triangular-lattice Potts models, blinkers seem-
ingly only occur when q > 4 with a probability that is
vanishingly small with increasing L [48]. Here I find three
main categories of blinkers: five-, eight- and 12-cluster con-
figurations. Each contain O(1) active sites which are pinned in
the same way as the blinker spin in Fig. 6. The probability of
reaching blinkers with five, eight, and 12 clusters is O(10−3),
O(10−4), and O(10−4), respectively. I also found a single
realization that reached a blinker state with 16 clusters with
L = 22. The probability of reaching a blinker configuration—
of any kind—on the triangular lattice is vanishingly small with
increasing L.

IV. TIME EVOLUTION

Two natural observables to consider when a high-q Potts
system is quenched are the number of clusters, Nc, and the
number of extant spins states, Eq. A cluster is simply a group
of aligned spins that are connected through nearest-neighbor
contact, and the number of extant q is a count of the distinct
spin states that remain present in the system.

I compare the time evolution of these quantities for Potts
systems with q = 3, q = 60 and q = L2 in Fig. 7. As the
number of spin states increases, the departure from the un-
magnetized initial state slows; both Nc and Eq are increasingly
stagnant at early times with greater q.

The explanation for this slow initial evolution is simple:
consider the unmagnetized initial condition where no spin has
any aligned neighbors. Each spin may freely undergo one of

FIG. 6. Zoom-in on a blinker spin (B) which can align with
its North and Northwest neighbors (×) or its South and Southeast
neighbors (©), but never its East or West neighbors.
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FIG. 7. Time dependence of (a) the number of clusters Nc and
(b) the number of extant spin states Eq. The data are based on 103

realizations with L = 60.

(q − 1) possible transitions. In a small q Potts system, the
probability that a spin should flip to align with a neighbor
is relatively high. However, when q is large, the probability
that a single flip should result in two neighbors aligning is
small. Consequently, at large q, it takes longer for the spins to
align, so the departure from the unmagnetized initial condition
becomes increasingly slow.

V. DISCUSSION

I investigated the final state of a zero-temperature Potts
ferromagnet where the ground-state degeneracy was equal to
the number of lattice sites. With respect to q = 3, the geomet-
ric and topological nature of the final states is not materially
different, but their relative abundance is different.

The ground state is the most prevalent final state, and
is reached with probability ≈0.71 when L = 128. Three-
hexagon states appear more frequently with increasing L, and
are reached with probability ≈0.26 when L = 128. I also
found hexagon states with five, eight, and 12 clusters with
probabilities of O(10−3), O(10−4), and O(10−4), respectively.
On-axis stripe states, where the domain walls run along one of
the three lattices axes, also appeared. The probability of reach-
ing two-stripe states decays with increasing L, and was ≈0.03
when L = 128. Blinker configurations with five, eight, and
12 clusters also emerged. The probability of finding blinker
configurations is O(10−3) or less, and is vanishingly small
with increasing L.

The time evolution at high q is inherently slow, meaning
my probability estimates as L → ∞ are necessarily crude. I
illustrated this slow evolution by comparing the number of
clusters and extant spin states as functions of time in Potts
models with q = 3, q = 60, and q = L2 = 3600.

There are a number of open questions concerning the fate
of kinetic Potts ferromagnets at zero-temperature. The exact
computation of the final state probabilities with q = 3 has not
yet been achieved. The connection with two-color percolation
that emerged in the Ising model enabled the precise conjecture
of the final state probabilities; perhaps a similar connection
exists between the less-well-understood three-color perco-
lation and the three-state Potts model? Nevertheless, the
affinity between the final states of the square- and triangular-
lattice Ising models at zero temperature is not present in the

012119-4



HIGH-DEGENERACY POTTS COARSENING PHYSICAL REVIEW E 103, 012119 (2021)

equivalent Potts models, so the universality of a connection to
three-color percolation is unclear.

Furthermore, even if three-color percolation does apply to a
Potts ferromagnet with q = 3, the question of q > 3 remains;
the general dependence of the final state probabilities on the
number of spin states is still unknown. It is conceivable that
the high-q limit will one day play a role in an analytical so-
lution for the final state probabilities of the zero-temperature
Potts model on the infinite triangular lattice geometry. In such
a case, knowledge of how the final state probabilities behave
in finite geometries, and of what kinds of final state to expect,
will be important. The fact the final state probabilities for
q = L2 are different to the q = 3 case is an interesting finding,
and suggests the ground-state degeneracy plays an important
role in determining the final state.

Additionally, the fate of the zero-temperature Potts ferro-
magnet on the simple cubic lattice remains unexplored. On the
triangular lattice, where the spins have six nearest neighbors,

the final states become materially simpler and more tractable.
Perhaps the three-state Potts model on the simple cubic lattice,
which also has a coordination number of six, will exhibit a
similar simplicity?

All data underpinning this publication are openly avail-
able from the University of Strathclyde KnowledgeBase at
Ref. [52].
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