7 research outputs found

    Bayesian maximum entropy interpolation analysis for rapid assessment of seismic intensity using station and ground motion prediction equations

    No full text
    In this paper, we explored the combination of seismic station data and ground motion prediction equations (GMPE) to predict seismic intensity results by using Bayesian Maximum Entropy (BME) method. The results indicate that: 1) In earthquake analysis in Japan, soft data has predicted higher values of intensity in disaster areas. BME corrected this phenomenon, especially near the epicenter. Meanwhile, for earthquakes in the United States, BME corrected the erroneous prediction of rupture direction using soft data. 2) Compared with other spatial interpolation methods, the profile results of Japan earthquake and Turkey earthquake show that BME is more consistent with ShakeMap results than IDW and Kriging. Moreover, IDW has a low intensity anomaly zone. 3) The BME method overcomes the phenomenon that the strength evaluation results do not match the actual failure situation when the moment magnitude is small. It more accurately delineates the scope of the disaster area and enriches the post-earthquake processing of disaster area information and data. BME has a wide range of applicability, and it can still be effectively used for interpolation analysis when there is only soft data or few sites with data available

    Preliminary report of the September 5, 2022 MS 6.8 Luding earthquake, Sichuan, China

    No full text
    The 2022 MS 6.8 Luding earthquake is the strongest earthquake in Sichuan Province, Western China, since the 2017 MS 7.0 Jiuzhaigou earthquake. It occurred on the Moxi fault in the southeastern segment of the Xianshuihe fault, a tectonically active and mountainous region with severe secondary earthquake disasters. To better understand the seismogenic mechanism and provide scientific support for future hazard mitigation, we summarize the preliminary results of the Luding earthquake, including seismotectonic background, seismicity and mainshock source characteristics and aftershock properties, and direct and secondary damage associated with the mainshock. The peak ground displacements in the NS and EW directions observed by the nearest GNSS station SCCM are ∼35 mm and ∼55 mm, respectively, resulting in the maximum coseismic dislocation of 20 mm along the NWW direction, which is consistent with the sinistral slip on the Xianshuihe fault. Back-projection of teleseismic P waves suggest that the mainshock rupture propagated toward south-southeast. The seismic intensity of the mainshock estimated from the back-projection results indicates a Mercalli scale of VIII or above near the ruptured area, consistent with the results from instrumental measurements and field surveys. Numerous aftershocks were reported, with the largest being MS 4.5. Aftershock locations (up to September 18, 2022) exhibit 3 clusters spanning an area of 100 km long and 30 km wide. The magnitude and rate of aftershocks decreased as expected, and the depths became shallower with time. The mainshock and two aftershocks show left-lateral strike-slip focal mechanisms. For the aftershock sequence, the b-value from the Gutenberg-Richter frequency-magnitude relationship, h-value, and p-value for Omori’s law for aftershock decay are 0.81, 1.4, and 1.21, respectively, indicating that this is a typical mainshock-aftershock sequence. The low b-value implies high background stress in the hypocenter region. Analysis from remote sensing satellite images and UAV data shows that the distribution of earthquake-triggered landslides was consistent with the aftershock area. Numerous small-size landslides with limited volumes were revealed, which damaged or buried the roads and severely hindered the rescue process

    SoccerNet 2022 Challenges Results

    Full text link
    peer reviewedThe SoccerNet 2022 challenges were the second annual video understanding challenges organized by the SoccerNet team. In 2022, the challenges were composed of 6 vision-based tasks: (1) action spotting, focusing on retrieving action timestamps in long untrimmed videos, (2) replay grounding, focusing on retrieving the live moment of an action shown in a replay, (3) pitch localization, focusing on detecting line and goal part elements, (4) camera calibration, dedicated to retrieving the intrinsic and extrinsic camera parameters, (5) player re-identification, focusing on retrieving the same players across multiple views, and (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams. Compared to last year's challenges, tasks (1-2) had their evaluation metrics redefined to consider tighter temporal accuracies, and tasks (3-6) were novel, including their underlying data and annotations. More information on the tasks, challenges and leaderboards are available on https://www.soccer-net.org. Baselines and development kits are available on https://github.com/SoccerNet .Applications et Recherche pour une Intelligence Artificielle de Confiance (ARIAC

    SoccerNet 2022 Challenges Results

    Get PDF
    peer reviewedThe SoccerNet 2022 challenges were the second annual video understanding challenges organized by the SoccerNet team. In 2022, the challenges were composed of 6 vision-based tasks: (1) action spotting, focusing on retrieving action timestamps in long untrimmed videos, (2) replay grounding, focusing on retrieving the live moment of an action shown in a replay, (3) pitch localization, focusing on detecting line and goal part elements, (4) camera calibration, dedicated to retrieving the intrinsic and extrinsic camera parameters, (5) player re-identification, focusing on retrieving the same players across multiple views, and (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams. Compared to last year's challenges, tasks (1-2) had their evaluation metrics redefined to consider tighter temporal accuracies, and tasks (3-6) were novel, including their underlying data and annotations. More information on the tasks, challenges and leaderboards are available on https://www.soccer-net.org. Baselines and development kits are available on https://github.com/SoccerNet .Applications et Recherche pour une Intelligence Artificielle de Confiance (ARIAC

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios
    corecore