10,901 research outputs found

    Evaluating Agricultural Banking Efficiency Using the Fourier Flexible Functional Form

    Get PDF
    This study applied more flexible cost functional form, Fourier Flexible Functional Form, and tested the validity of the Translog cost functional form as to estimate the cost function incorporating risk and loan's quality for banking industry. Meanwhile, the study extended four different cost efficiency measures for banking industry not only among different sized banks but also between commercial banks and agricultural banks. And thereafter, by evaluating these efficiency measures, banks will identify sources of inefficiency, which should aid banks in developing approaches to improve their operational policies, procedures, and performance.Agricultural Finance,

    DISCRETE AND CONTINUOUS TIME MODELS FOR FARM CREDIT MIGRATION ANALYSIS

    Get PDF
    This paper introduces two continuous time models, i.e. time homogenous and non-homogenous Markov chain models, for analyzing farm credit migration as alternatives to the traditional discrete time model cohort method. Results illustrate that the two continuous time models provide more detailed, accurate and reliable estimates of farm credit migration rates than the discrete time model. Metric comparisons among the three transition matrices show that the imposition of the potentially unrealistic assumption of time homogeneity still produces more accurate estimates of farm credit migration rates, although the equally reliable figures under the non-homogenous time model seem more plausible given the greater relevance and applicability of the latter model to farm business conditions.Agricultural Finance,

    Redshifts and Luminosities for 112 Gamma Ray Bursts

    Get PDF
    Two different luminosity indicators have recently been proposed for Gamma Ray Bursts that use gamma-ray observations alone. They relate the burst luminosity (L) with the time lag between peaks in hard and soft energies, and the spikiness or variability of the burst's light curve (V). These relations are currently justified and calibrated with only 6 or 7 bursts with known red shifts. We have examined BATSE data for the lag and V for 112 bursts. (1) A strong correlation between the lag and V exists, and it is exactly as predicted from the two proposed relations. This is proof that both luminosity indicators are reliable. (2) GRB830801 is the all-time brightest burst, yet with a small V and a large lag, and hence is likely the closest known event being perhaps as close as 3.2 Mpc. (3) We have combined the luminosities as derived from both indicators as a means to improve the statistical and systematic accuracy when compared with the accuracy from either method alone. The result is a list of 112 bursts with good luminosities and hence red shifts. (4) The burst averaged hardness ratio rises strongly with the luminosity of the burst. (5) The burst luminosity function is a broken power law, with the break at L = 2x10^{52} erg/s. The luminosity function has power law indices of -2.8+-0.2 above the break and -1.7+-0.1 below the break. (6) The number density of GRBs varies with red shift roughly as (1+z)^(2.5+-0.3) between 0.2<z<5. Excitingly, this result also provides a measure of the star formation rate out to z~5 with no effects from reddening, and the rate is rising uniformly for red shifts above 2.Comment: 13 pages, 4 figures, submitted to ApJLet

    Parity independence of the zero-bias conductance peak in a nanowire based topological superconductor-quantum dot hybrid device

    Full text link
    We explore the signatures of Majorana fermions in a nanowire based topological superconductor-quantum dot-topological superconductor hybrid device by charge transport measurements. The device is made from an epitaxially grown InSb nanowire with two superconductor Nb contacts on a Si/SiO2_2 substrate. At low temperatures, a quantum dot is formed in the segment of the InSb nanowire between the two Nb contacts and the two Nb contacted segments of the InSb nanowire show superconductivity due to the proximity effect. At zero magnetic field, well defined Coulomb diamonds and the Kondo effect are observed in the charge stability diagram measurements in the Coulomb blockade regime of the quantum dot. Under the application of a finite, sufficiently strong magnetic field, a zero-bias conductance peak structure is observed in the same Coulomb blockade regime. It is found that the zero-bias conductance peak is present in many consecutive Coulomb diamonds, irrespective of the even-odd parity of the quasi-particle occupation number in the quantum dot. In addition, we find that the zero-bias conductance peak is in most cases accompanied by two differential conductance peaks, forming a triple-peak structure, and the separation between the two side peaks in bias voltage shows oscillations closely correlated to the background Coulomb conductance oscillations of the device. The observed zero-bias conductance peak and the associated triple-peak structure are in line with the signatures of Majorana fermion physics in a nanowire based topological superconductor-quantum dot-topological superconductor system, in which the two Majorana bound states adjacent to the quantum dot are hybridized into a pair of quasi-particle states with finite energies and the other two Majorana bound states remain as the zero-energy modes located at the two ends of the entire InSb nanowire.Comment: 6 pages, 4 figure

    Formation of Long Single Quantum Dots in High Quality InSb Nanowires Grown by Molecular Beam Epitaxy

    Full text link
    We report on realization and transport spectroscopy study of single quantum dots (QDs) made from InSb nanowires grown by molecular beam epitaxy (MBE). The nanowires employed are 50-80 nm in diameter and the QDs are defined in the nanowires between the source and drain contacts on a Si/SiO2_2 substrate. We show that highly tunable QD devices can be realized with the MBE-grown InSb nanowires and the gate-to-dot capacitance extracted in the many-electron regimes is scaled linearly with the longitudinal dot size, demonstrating that the devices are of single InSb nanowire QDs even with a longitudinal size of ~700 nm. In the few-electron regime, the quantum levels in the QDs are resolved and the Land\'e g-factors extracted for the quantum levels from the magnetotransport measurements are found to be strongly level-dependent and fluctuated in a range of 18-48. A spin-orbit coupling strength is extracted from the magnetic field evolutions of a ground state and its neighboring excited state in an InSb nanowire QD and is on the order of ~300 ÎĽ\mueV. Our results establish that the MBE-grown InSb nanowires are of high crystal quality and are promising for the use in constructing novel quantum devices, such as entangled spin qubits, one-dimensional Wigner crystals and topological quantum computing devices.Comment: 19 pages, 5 figure

    Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state

    Full text link
    We present a scheme for symmetric multiparty quantum state sharing of an arbitrary mm-qubit state with mm Greenberger-Horne-Zeilinger states following some ideas from the controlled teleportation [Phys. Rev. A \textbf{72}, 02338 (2005)]. The sender Alice performs mm Bell-state measurements on her 2m2m particles and the controllers need only to take some single-photon product measurements on their photons independently, not Bell-state measurements, which makes this scheme more convenient than the latter. Also it does not require the parties to perform a controlled-NOT gate on the photons for reconstructing the unknown mm-qubit state and it is an optimal one as its efficiency for qubits approaches the maximal value.Comment: 6 pages, no figures; It simplifies the process for sharing an arbitrary m-qubit state in Phys. Rev. A 72, 022338 (2005) (quant-ph/0501129

    Broad-lined type Ic supernova iPTF16asu: A challenge to all popular models

    Full text link
    It is well-known that ordinary supernovae (SNe) are powered by 56Ni cascade decay. Broad-lined type Ic SNe (SNe Ic-BL) are a subclass of SNe that are not all exclusively powered by 56Ni decay. It was suggested that some SNe Ic-BL are powered by magnetar spin-down. iPTF16asu is a peculiar broad-lined type Ic supernova discovered by the intermediate Palomar Transient Factory. With a rest-frame rise time of only 4 days, iPTF16asu challenges the existing popular models, for example, the radioactive heating (56Ni-only) and the magnetar+56Ni models. Here we show that this rapid rise could be attributed to interaction between the SN ejecta and a pre-existing circumstellar medium ejected by the progenitor during its final stages of evolution, while the late-time light curve can be better explained by energy input from a rapidly spinning magnetar. This model is a natural extension to the previous magnetar model. The mass-loss rate of the progenitor and ejecta mass are consistent with a progenitor that experienced a common envelope evolution in a binary. An alternative model for the early rapid rise of the light curve is the cooling of a shock propagating into an extended envelope of the progenitor. It is difficult at this stage to tell which model (interaction+magnetar+56Ni or cooling+magnetar+56Ni) is better for iPTF16asu. However, it is worth noting that the inferred envelope mass in the cooling+magnetar+56Ni is very high.Comment: 11 pages, 4 figures, 3 table

    Circular quantum secret sharing

    Full text link
    A circular quantum secret sharing protocol is proposed, which is useful and efficient when one of the parties of secret sharing is remote to the others who are in adjacent, especially the parties are more than three. We describe the process of this protocol and discuss its security when the quantum information carrying is polarized single photons running circularly. It will be shown that entanglement is not necessary for quantum secret sharing. Moreover, the theoretic efficiency is improved to approach 100% as almost all the instances can be used for generating the private key, and each photon can carry one bit of information without quantum storage. It is straightforwardly to utilize this topological structure to complete quantum secret sharing with multi-level two-particle entanglement in high capacity securely.Comment: 7 pages, 2 figure
    • …
    corecore