1,660 research outputs found

    Gene Clusters Located on Two Large Plasmids Determine Spore Crystal Association (SCA) in Bacillus thuringiensis Subsp. finitimus Strain YBT-020

    Get PDF
    Crystals in Bacillus thuringiensis are usually formed in the mother cell compartment during sporulation and are separated from the spores after mother cell lysis. In a few strains, crystals are produced inside the exosporium and are associated with the spores after sporulation. This special phenotype, named ‘spore crystal association’ (SCA), typically occurs in B. thuringiensis subsp. finitimus. Our aim was to identify genes determining the SCA phenotype in B. thuringiensis subsp. finitimus strain YBT-020. Plasmid conjugation experiments indicated that the SCA phenotype in this strain was tightly linked with two large plasmids (pBMB26 and pBMB28). A shuttle bacterial artificial chromosome (BAC) library of strain YBT-020 was constructed. Six fragments from BAC clones were screened from this library and discovered to cover the full length of pBMB26; four others were found to cover pBMB28. Using fragment complementation testing, two fragments, each of approximately 35 kb and located on pBMB26 and pBMB28, were observed to recover the SCA phenotype in an acrystalliferous mutant, B. thuringiensis strain BMB171. Furthermore, deletion analysis indicated that the crystal protein gene cry26Aa from pBMB26, along with five genes from pBMB28, were indispensable to the SCA phenotype. Gene disruption and frame-shift mutation analyses revealed that two of the five genes from pBMB28, which showed low similarity to crystal proteins, determined the location of crystals inside the exosporium. Gene disruption revealed that the three remaining genes, similar to spore germination genes, contributed to the stability of the SCA phenotype in strain YBT-020. Our results thus identified the genes determining the SCA phenotype in B. thuringiensis subsp. finitimus

    Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV

    Full text link
    By analyzing the data sets of 17.3 pb−1^{-1} taken at s=3.773\sqrt{s}=3.773 GeV and 6.5 pb−1^{-1} taken at s=3.650\sqrt{s}=3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in e+e−e^+e^- annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay to these final states at 90% C.L.Comment: 8 pages, 5 figur

    Measurements of psi(2S) decays to octet baryon-antibaryon pairs

    Get PDF
    With a sample of 14 million psi(2S) events collected by the BESII detector at the Beijing Electron Positron Collider (BEPC), the decay channels psi(2S)->p p-bar, Lambda Lambda-bar, Sigma0 Sigma0-bar, Xi Xi-bar are measured, and their branching ratios are determined to be (3.36+-0.09+-0.24)*10E-4, (3.39+-0.20+-0.32)*10E-4, (2.35+-0.36+-0.32)*10E-4, (3.03+-0.40+-0.32)*10E-4, respectively. In the decay psi(2S)->p p-bar, the angular distribution parameter alpha is determined to be 0.82+-0.17+-0.04.Comment: 8 pages, 8 figure

    Measurements of the observed cross sections for e+e−→e^+e^-\to exclusive light hadrons containing π0π0\pi^0\pi^0 at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV

    Full text link
    By analyzing the data sets of 17.3, 6.5 and 1.0 pb−1^{-1} taken, respectively, at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for e+e−→π+π−π0π0e^+e^-\to \pi^+\pi^-\pi^0\pi^0, K+K−π0π0K^+K^-\pi^0\pi^0, 2(π+π−π0)2(\pi^+\pi^-\pi^0), K+K−π+π−π0π0K^+K^-\pi^+\pi^-\pi^0\pi^0 and 3(π+π−)π0π03(\pi^+\pi^-)\pi^0\pi^0 at the three energy points. Based on these cross sections we set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay into these final states at 90% C.L..Comment: 7 pages, 2 figure

    Partial wave analysis of J/\psi \to \gamma \phi \phi

    Get PDF
    Using 5.8×107J/ψ5.8 \times 10^7 J/\psi events collected in the BESII detector, the radiative decay J/ψ→γϕϕ→γK+K−KS0KL0J/\psi \to \gamma \phi \phi \to \gamma K^+ K^- K^0_S K^0_L is studied. The ϕϕ\phi\phi invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/c2c^{2}. A partial wave analysis shows that the structure is dominated by a 0−+0^{-+} state (η(2225)\eta(2225)) with a mass of 2.24−0.02+0.03−0.02+0.032.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02} GeV/c2c^{2} and a width of 0.19±0.03−0.04+0.060.19 \pm 0.03^{+0.06}_{-0.04} GeV/c2c^{2}. The product branching fraction is: Br(J/ψ→γη(2225))⋅Br(η(2225)→ϕϕ)=(4.4±0.4±0.8)×10−4Br(J/\psi \to \gamma \eta(2225))\cdot Br(\eta(2225)\to \phi\phi) = (4.4 \pm 0.4 \pm 0.8)\times 10^{-4}.Comment: 11 pages, 4 figures. corrected proof for journa

    Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays

    Full text link
    By analyzing about 33 pb−1\rm pb^{-1} data sample collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we directly measure the branching fractions for the neutral and charged DD inclusive semimuonic decays to be BF(D0→μ+X)=(6.8±1.5±0.7)BF(D^0 \to \mu^+ X) =(6.8\pm 1.5\pm 0.7)% and BF(D+→μ+X)=(17.6±2.7±1.8)BF(D^+ \to \mu^+ X) =(17.6 \pm 2.7 \pm 1.8)%, and determine the ratio of the two branching fractions to be BF(D+→μ+X)BF(D0→μ+X)=2.59±0.70±0.25\frac{BF(D^+ \to \mu^+ X)}{BF(D^0 \to \mu^+ X)}=2.59\pm 0.70 \pm 0.25

    The σ\sigma pole in J/ψ→ωπ+π−J/\psi \to \omega \pi^+ \pi^-

    Full text link
    Using a sample of 58 million J/ψJ/\psi events recorded in the BESII detector, the decay J/ψ→ωπ+π−J/\psi \to \omega \pi^+ \pi^- is studied. There are conspicuous ωf2(1270)\omega f_2(1270) and b1(1235)πb_1(1235)\pi signals. At low ππ\pi \pi mass, a large broad peak due to the σ\sigma is observed, and its pole position is determined to be (541±39)(541 \pm 39) - ii (252±42)(252 \pm 42) MeV from the mean of six analyses. The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL

    A study of charged kappa in J/ψ→K±Ksπ∓π0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0

    Full text link
    Based on 58×10658 \times 10^6 J/ψJ/\psi events collected by BESII, the decay J/ψ→K±Ksπ∓π0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0 is studied. In the invariant mass spectrum recoiling against the charged K∗(892)±K^*(892)^{\pm}, the charged κ\kappa particle is found as a low mass enhancement. If a Breit-Wigner function of constant width is used to parameterize the kappa, its pole locates at (849±77−14+18)−i(256±40−22+46)(849 \pm 77 ^{+18}_{-14}) -i (256 \pm 40 ^{+46}_{-22}) MeV/c2c^2. Also in this channel, the decay J/ψ→K∗(892)+K∗(892)−J/\psi \to K^*(892)^+ K^*(892)^- is observed for the first time. Its branching ratio is (1.00±0.19−0.32+0.11)×10−3(1.00 \pm 0.19 ^{+0.11}_{-0.32}) \times 10^{-3}.Comment: 14 pages, 4 figure

    Measurement of \psip Radiative Decays

    Full text link
    Using 14 million psi(2S) events accumulated at the BESII detector, we report first measurements of branching fractions or upper limits for psi(2S) decays into gamma ppbar, gamma 2(pi^+pi^-), gamma K_s K^-pi^++c.c., gamma K^+ K^- pi^+pi^-, gamma K^{*0} K^- pi^+ +c.c., gamma K^{*0}\bar K^{*0}, gamma pi^+pi^- p pbar, gamma 2(K^+K^-), gamma 3(pi^+pi^-), and gamma 2(pi^+pi^-)K^+K^- with the invariant mass of hadrons below 2.9GeV/c^2. We also report branching fractions of psi(2S) decays into 2(pi^+pi^-) pi^0, omega pi^+pi^-, omega f_2(1270), b_1^\pm pi^\mp, and pi^0 2(pi^+pi^-) K^+K^-.Comment: 5 pages, 4 figure

    Measurements of J/ψJ/\psi and ψ(2S)\psi(2S) decays into ΛΛˉπ0\Lambda \bar{\Lambda}\pi^0 and ΛΛˉη\Lambda \bar{\Lambda}\eta

    Full text link
    Using 58 million J/ψJ/\psi and 14 million ψ(2S)\psi(2S) events collected by the BESII detector at the BEPC, branching fractions or upper limits for the decays J/ψJ/\psi and ψ(2S)→ΛΛˉπ0\psi(2S) \to \Lambda \bar{\Lambda}\pi^0 and ΛΛˉη\Lambda \bar{\Lambda}\eta are measured. For the isospin violating decays, the upper limits are determined to be B(J/ψ→ΛΛˉπ0)<6.4×10−5{\cal B}(J/\psi \to \Lambda \bar{\Lambda}\pi^0)<6.4\times 10^{-5} and B(ψ(2S)→ΛΛˉπ0)<4.9×10−5{\cal B}(\psi(2S) \to \Lambda \bar{\Lambda}\pi^0)<4.9\times 10^{-5} at the 90% confidence level. The isospin conserving process J/ψ→ΛΛˉηJ/\psi \to \Lambda \bar{\Lambda}\eta is observed for the first time, and its branching fraction is measured to be B(J/ψ→ΛΛˉη)=(2.62±0.60±0.44)×10−4{\cal B}(J/\psi \to \Lambda \bar{\Lambda}\eta)=(2.62\pm 0.60\pm 0.44)\times 10^{-4}, where the first error is statistical and the second one is systematic. No ΛΛˉη\Lambda \bar{\Lambda}\eta signal is observed in ψ(2S)\psi(2S) decays, and B(ψ(2S)→ΛΛˉη)<1.2×10−4{\cal B}(\psi(2S) \to \Lambda \bar{\Lambda}\eta)<1.2\times 10^{-4} is set at the 90% confidence level. Branching fractions of J/ψJ/\psi decays into Σ+π−barΛ\Sigma^+ \pi^- bar{\Lambda} and Σˉ−π+Λ\bar{\Sigma}^- \pi^+ \Lambda are also reported, and the sum of these branching fractions is determined to be B(J/ψ→Σ+π−Λˉ+c.c.)=(1.52±0.08±0.16)×10−3{\cal B}(J/\psi \to \Sigma^+\pi^- \bar{\Lambda} + c.c.)=(1.52\pm 0.08\pm 0.16)\times 10^{-3}.Comment: 7 pages, 10 figures. Phys.Rev.D comments considere
    • …
    corecore