14,782 research outputs found

    Probabilistic Label Relation Graphs with Ising Models

    Full text link
    We consider classification problems in which the label space has structure. A common example is hierarchical label spaces, corresponding to the case where one label subsumes another (e.g., animal subsumes dog). But labels can also be mutually exclusive (e.g., dog vs cat) or unrelated (e.g., furry, carnivore). To jointly model hierarchy and exclusion relations, the notion of a HEX (hierarchy and exclusion) graph was introduced in [7]. This combined a conditional random field (CRF) with a deep neural network (DNN), resulting in state of the art results when applied to visual object classification problems where the training labels were drawn from different levels of the ImageNet hierarchy (e.g., an image might be labeled with the basic level category "dog", rather than the more specific label "husky"). In this paper, we extend the HEX model to allow for soft or probabilistic relations between labels, which is useful when there is uncertainty about the relationship between two labels (e.g., an antelope is "sort of" furry, but not to the same degree as a grizzly bear). We call our new model pHEX, for probabilistic HEX. We show that the pHEX graph can be converted to an Ising model, which allows us to use existing off-the-shelf inference methods (in contrast to the HEX method, which needed specialized inference algorithms). Experimental results show significant improvements in a number of large-scale visual object classification tasks, outperforming the previous HEX model.Comment: International Conference on Computer Vision (2015

    Fourier Transform Methods for Option Pricing

    Get PDF

    Emergent O(n) Symmetry in a series of three-dimensional Potts Models

    Get PDF
    We study the q-state Potts model on the simple cubic lattice with ferromagnetic interactions in one lattice direction, and antiferromagnetic interactions in the two other directions. As the temperature T decreases, the system undergoes a second-order phase transition that fits in the universality class of the 3D O(n) model with n=q-1. This conclusion is based on the estimated critical exponents, and histograms of the order parameter. At even smaller T we find, for q=4 and 5, a first-order transition to a phase with a different type of long-range order. This long-range order dissolves at T=0, and the system effectively reduces to a disordered two-dimensional Potts antiferromagnet. These results are obtained by means of Monte Carlo simulations and finite-size scaling.Comment: 5 pages, 7 figures, accepted by Physical Review
    • …
    corecore