14,790 research outputs found
Temperature - pressure phase diagram of the superconducting iron pnictide LiFeP
Electrical-resistivity and magnetic-susceptibility measurements under
hydrostatic pressure up to p = 2.75 GPa have been performed on superconducting
LiFeP. A broad superconducting (SC) region exists in the temperature - pressure
(T-p) phase diagram. No indications for a spin-density-wave transition have
been found, but an enhanced resistivity coefficient at low pressures hints at
the presence of magnetic fluctuations. Our results show that the
superconducting state in LiFeP is more robust than in the isostructural and
isoelectronic LiFeAs. We suggest that this finding is related to the nearly
regular [FeP_4] tetrahedron in LiFeP.Comment: 4 pages, 4 figure
A new 111 type iron pnictide superconductor LiFeP
A new iron pnictide LiFeP superconductor was found. The compound crystallizes
into a Cu2Sb structure containing an FeP layer showing superconductivity with
maximum Tc of 6K. This is the first 111 type iron pnictide superconductor
containing no arsenic. The new superconductor is featured with itinerant
behavior at normal state that could helpful to understand the novel
superconducting mechanism of iron pnictide compounds.Comment: 3 figures + 1 tabl
Parity independence of the zero-bias conductance peak in a nanowire based topological superconductor-quantum dot hybrid device
We explore the signatures of Majorana fermions in a nanowire based
topological superconductor-quantum dot-topological superconductor hybrid device
by charge transport measurements. The device is made from an epitaxially grown
InSb nanowire with two superconductor Nb contacts on a Si/SiO substrate. At
low temperatures, a quantum dot is formed in the segment of the InSb nanowire
between the two Nb contacts and the two Nb contacted segments of the InSb
nanowire show superconductivity due to the proximity effect. At zero magnetic
field, well defined Coulomb diamonds and the Kondo effect are observed in the
charge stability diagram measurements in the Coulomb blockade regime of the
quantum dot. Under the application of a finite, sufficiently strong magnetic
field, a zero-bias conductance peak structure is observed in the same Coulomb
blockade regime. It is found that the zero-bias conductance peak is present in
many consecutive Coulomb diamonds, irrespective of the even-odd parity of the
quasi-particle occupation number in the quantum dot. In addition, we find that
the zero-bias conductance peak is in most cases accompanied by two differential
conductance peaks, forming a triple-peak structure, and the separation between
the two side peaks in bias voltage shows oscillations closely correlated to the
background Coulomb conductance oscillations of the device. The observed
zero-bias conductance peak and the associated triple-peak structure are in line
with the signatures of Majorana fermion physics in a nanowire based topological
superconductor-quantum dot-topological superconductor system, in which the two
Majorana bound states adjacent to the quantum dot are hybridized into a pair of
quasi-particle states with finite energies and the other two Majorana bound
states remain as the zero-energy modes located at the two ends of the entire
InSb nanowire.Comment: 6 pages, 4 figure
Formation of Long Single Quantum Dots in High Quality InSb Nanowires Grown by Molecular Beam Epitaxy
We report on realization and transport spectroscopy study of single quantum
dots (QDs) made from InSb nanowires grown by molecular beam epitaxy (MBE). The
nanowires employed are 50-80 nm in diameter and the QDs are defined in the
nanowires between the source and drain contacts on a Si/SiO substrate. We
show that highly tunable QD devices can be realized with the MBE-grown InSb
nanowires and the gate-to-dot capacitance extracted in the many-electron
regimes is scaled linearly with the longitudinal dot size, demonstrating that
the devices are of single InSb nanowire QDs even with a longitudinal size of
~700 nm. In the few-electron regime, the quantum levels in the QDs are resolved
and the Land\'e g-factors extracted for the quantum levels from the
magnetotransport measurements are found to be strongly level-dependent and
fluctuated in a range of 18-48. A spin-orbit coupling strength is extracted
from the magnetic field evolutions of a ground state and its neighboring
excited state in an InSb nanowire QD and is on the order of ~300 eV. Our
results establish that the MBE-grown InSb nanowires are of high crystal quality
and are promising for the use in constructing novel quantum devices, such as
entangled spin qubits, one-dimensional Wigner crystals and topological quantum
computing devices.Comment: 19 pages, 5 figure
Chemical abundance analysis of 19 barium stars
We aim at deriving accurate atmospheric parameters and chemical abundances of
19 barium (Ba) stars, including both strong and mild Ba stars, based on the
high signal-to-noise ratio and high resolution Echelle spectra obtained from
the 2.16 m telescope at Xinglong station of National Astronomical
Observatories, Chinese Academy of Sciences. The chemical abundances of the
sample stars were obtained from an LTE, plane-parallel and line-blanketed
atmospheric model by inputting the atmospheric parameters (effective
temperatures, surface gravities, metallicity and microturbulent velocity) and
equivalent widths of stellar absorption lines. These samples of Ba stars are
giants indicated by atmospheric parameters, metallicities and kinematic
analysis about UVW velocity. Chemical abundances of 17 elements were obtained
for these Ba stars. Their light elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr,
Mn and Ni) are similar to the solar abundances. Our samples of Ba stars show
obvious overabundances of neutron-capture (n-capture) process elements relative
to the Sun. Their median abundances of [Ba/Fe], [La/Fe] and [Eu/Fe] are 0.54,
0.65 and 0.40, respectively. The YI and ZrI abundances are lower than Ba, La
and Eu, but higher than the light elements for the strong Ba stars and similar
to the iron-peak elements for the mild stars. There exists a positive
correlation between Ba intensity and [Ba/Fe]. For the n-capture elements (Y,
Zr, Ba, La), there is an anti-correlation between their [X/Fe] and [Fe/H]. We
identify nine of our sample stars as strong Ba stars with [Ba/Fe]>0.6 where
seven of them have Ba intensity Ba=2-5, one has Ba=1.5 and another one has
Ba=1.0. The remaining ten stars are classified as mild Ba stars with
0.17<[Ba/Fe]<0.54
Circular quantum secret sharing
A circular quantum secret sharing protocol is proposed, which is useful and
efficient when one of the parties of secret sharing is remote to the others who
are in adjacent, especially the parties are more than three. We describe the
process of this protocol and discuss its security when the quantum information
carrying is polarized single photons running circularly. It will be shown that
entanglement is not necessary for quantum secret sharing. Moreover, the
theoretic efficiency is improved to approach 100% as almost all the instances
can be used for generating the private key, and each photon can carry one bit
of information without quantum storage. It is straightforwardly to utilize this
topological structure to complete quantum secret sharing with multi-level
two-particle entanglement in high capacity securely.Comment: 7 pages, 2 figure
- …