90 research outputs found

    Spatial Distribution and Source Analysis of Heavy Metals in Sediments of the Upstream Xijiang Basin within Nonferrous Metal Accumulation Areas

    No full text
    This study aimed to investigate how the development of the non-ferrous metals industry impacted sediment deposition in the upstream Xijiang Basin. Twelve sampling sites were selected on four tributaries in the upstream Xijiang Basin, namely, Diaojiang River, Longjiang River, Rongjiang River, and Liujiang River. Contents of Cu, Zn, Pb, Cd, As, Cr, Ni, Tl, Sb and Hg in sediments were measured in the twelve sampling sites, then correlation, clustering, and lead isotope tracing analyses were used to evaluate the distribution and sources of the measured heavy metals in sediments. The results showed that: (1) the average contents of As, Pb, Cd, Ni, Zn, Cu, Tl, Hg, Sb and Cr in sediments were 95.42, 113.09, 4.92, 28.03, 416.51, 27.07, 0.75, 0.31, 34.02 and 57.58 mg/kg, respectively. The river sediments have been seriously polluted by Cd, As, Zn and Pb, moderately polluted by Hg and Sb, and slightly polluted by Cr, Ni, Cu and Tl. (2) From a spatial perspective, the order of pollution degrees of sediments in the four tributaries was Diaojiang, Longjiang, Rongjinag, and Liujiang. (3) Regarding the source of contamination, As, Pb, Cd, Zn, Cu and Sb in the sediments were related to the mineral exploitation of nonferrous metal accumulation areas in the upstream Xijiang Basin. Ni, Tl, Hg and Cr in sediments mainly came from the natural geological background. The range of Pb/Pb ratio was 1.08 to 1.19 in the sediments. The order of similarity between lead isotope ratio in the sediments of the four tributaries and ore of Dachang and Chehe was Diaojiang, Longjiang, Rongjiang, and Liujiang. Lead isotope tracing analysis further revealed that heavy metals in the sediments of Diaojiang and Longjiang Rivers originated from non-ferrous mining and smelting activities, and those in Rongjiang and Liujiang Rivers were mainly contributed by the geological background in the sites

    Understanding the natural and socioeconomic factors behind regional longevity in Guangxi, China: is the centenarian ratio a good enough indicator for assessing the longevity phenomenon?

    No full text
    Despite a number of longevity indicators having been used in previous longevity studies, few studies have critically evaluated whether these indicators are suitable to assess the regional longevity level. In addition, an increasing number of studies have attempted to determine the influence of socioeconomic and natural factors on regional longevity, but only certain factors were considered. This study aims to bridge this gap by determining the relationship between the 7 longevity indicators and selecting 24 natural and socioeconomic indicators in 109 selected counties and urban districts in Guangxi, China. This study has applied spatial analysis and geographically weighted regression as the main research methods. The seven longevity indicators here refer to centenarian ratio, longevity index, longevity level, aging tendency, 80âș ratio, 90âș ratio, and 95âș ratio. Natural indicators in this study mainly refer to atmospheric pressure, temperature, difference in temperature, humidity, rainfall, radiation, water vapor, and altitude. Socioeconomic indicators can be categorized into those related to economic status, education, local infrastructure, and health care facilities. The results show that natural factors such as the difference in temperature and altitude, along with socioeconomic factors such as GDP, might be the most significant contributors to the longevity of people aged 60⁻90 years in Guangxi. The longevity index and longevity level are useful supplementary indexes to the centenarian ratio for assessing the regional longevity

    An indicator system for assessing the impact of human activities on river structure

    No full text
    The impact of human activities on river systems has reached a state in which they can no longer be considered to be controlled only by natural processes of the Earth but also by anthropogenic forces in many regions of world. However, most approaches for assessing the impact still consider human activities to be an external influence in the study of feedback mechanisms between human activities and river systems, and they are usually complicated and specialized. This paper aims to develop an indicator system that includes the artificial water surface ratio (AWSR), artificial water surface density ratio (AWSDR), disruption of longitudinal connectivity ratio (DLCR), artificial river ratio (ARR), sinuosity of artificial cutoff (SAC), channelization ratio (CR), artificial levee ratio (ALR), road along river ratio (RARR), artificial sediment transport ratio (ASTR) and the integrated river structure impact index (IRSII) to quantitatively assess the impact of human activities on river structure by comparing natural and anthropogenic forces in a river system. The Nanliu River basin under the dramatic impact of human activities was selected to validate the indicator system. The case results showed the Nanliu River has become an anthropogenic river according to its high IRSII value (greater than 0.49). The artificial water surface area and artificial sediment discharge were 2.96 (AWSR = 2.96) and 2.51 (ASTR = 2.51) times of the outcome of natural process. The river was dramatically blocked by human-made buildings (DLCR = 68.63) and artificial channel accounts for 54.23% of total length of natural river (ARR = 0.54). Within the river basin, upper and lower sub-basins in areas with a higher economic level were more affected by human activities. Future management of the Nanliu River basin should focus on restoration of river connectivity, sand mining and irrigation issues. Unlike most previous assessment methods, the approach developed in this study is simple and readily comprehensible by the public and decision makers, cost-effective for long-term monitoring and not subject to the reference condition

    Ecological risk of human health in sediments in a karstic river basin with high longevity population

    No full text
    Health and longevity are common human goals, and environmental factors can have significant impacts on human health. This study aims to investigate the historical changes and sources of trace elements in the sediments of a typical karstic river basin with high longevity population in Hechi City, Guangxi, China and to evaluate the ecological risks of trace elements in sediments. The results showed that over the past 100 years, the contents of trace elements in the sediments were lower in the upper reaches than in the middle and lower reaches of the river. The sediments had high trace element contents in 1950–1959 and 1989–1998, while low contents appeared after 1998. These periods correspond to China's industrial growth in the early 1950s, the Great Leap Forward movement in the late 1950s, the reform and opening-up policy implemented in the 1980s–1990s and the environmental protection policies to strengthen pollution control that have been implemented since 2000. Limestone soil and carbonate rock are the main sources of sediment in the basin. Although the geological background values of Cd and other trace elements in the basin were relatively high, the high calcium content and alkalinity of the water and sediment in the basin reduced the bioavailability of Cd and other heavy metals. The mainstream of Panyang River had a low environmental risk, but the tributary Bama River where there is dense population poses a moderate risk

    Relationship between Air Pollution and Regional Longevity in Guangxi, China

    No full text
    Air pollution has become a global environmental challenge and poses major threats to human health, particularly for the aging population. However, few studies have investigated the effects of air pollutants on human longevity, especially based on the total regional quantities and sources. Based on investigation of the spatiotemporal variations of three air pollutants (PM10, SO2, and NOx) and three longevity indicators (centenarian ratio, centenarity index, and aging tendency), this study aims to identify the relationship between air pollution and regional longevity in Guangxi Province. Air pollutant and population data from 109 counties and areas of Guangxi were collected from environmental research reports and statistical yearbooks. Cluster and outlier analysis was used to detect the regions with high and low clusters of the longevity indicators and air pollutants. Geographically weighted regression analyses were performed to determine the relationship between longevity and air pollutants. A negative relationship between the air pollutants PM10, SO2, and NOx on the aged population was observed. From a provincial level, industrial sources from the urban areas of cities located in the central province, including Liuzhou, Nanning, Laibing, Guigang and Yulin, were important contributors to the air pollutants PM10, SO2, and NOx, and thus could contribute to negative impacts on regional longevity. The key findings from this study will provide a case for management of air pollutants based on public health policies in China as well as other developing communities

    Understanding the Association between Environmental Factors and Longevity in Hechi, China: A Drinking Water and Soil Quality Perspective

    No full text
    The aging population is a big challenge all over the world. However, there are few studies to date investigating the effects of trace element and mineral levels in drinking water and soil (especially in karst areas) on longevity. This study aims to examine temporal and spatial variations in longevity in Hechi (which is recognized as a longevity city) and to investigate relationships between longevity and trace element and mineral levels in drinking water and soils in this city (the karst landscape). Population data were collected from relevant literature and four national population censuses in 1982, 1990, 2000 and 2010. Drinking water and soil samples from Hechi were collected and analyzed. The results demonstrated an obvious clustered distribution for the longevity population in Hechi that has existed stably for decades. The longevity index tended to be significantly positively correlated with H2SiO3, Ca and Fe in drinking water and significantly negatively correlated with Sr in soil, indicating that drinking water characteristics contributed significantly to the observed regional longevity. The karst landscape is responsible for abundant trace elements in underground rivers in Hechi, which are beneficial to human health when consumed as drinking water. Good quality and slightly alkaline drinking water rich in trace elements such as H2SiO3, Ca, Fe, Na, Mg and low in heavy metals such as Pb and Cd might be an important factor contributing to the longevity phenomenon in Hechi

    Study of the rare decay J ⁣/ψ→Ό+Ό−Ό+Ό−J\mskip -3mu/\mskip -2mu\psi \to \mu^+\mu^-\mu^+\mu^-

    No full text
    The rare electromagnetic J ⁣/ψ→Ό+Ό−Ό+Ό−J\mskip -3mu/\mskip -2mu\psi \to \mu^+\mu^-\mu^+\mu^- decay is observed with a significance greatly exceeding the discovery threshold, using proton-proton collision data collected by the LHCb experiment during 2016--2018 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.4 fb−15.4\,\text{fb}^{-1}. The rate of this decay is measured relative to that of the J ⁣/ψ→Ό+Ό−J\mskip -3mu/\mskip -2mu\psi \to \mu^+\mu^- mode. Using the QED model for the four-muon decay in the efficiency estimation, its branching fraction is determined to be \begin{equation*} {\mathcal{B}}(J\mskip -3mu/\mskip -2mu\psi \to \mu^+\mu^-\mu^+\mu^-) = (1.13\pm0.10\pm0.05\pm0.01)\times 10^{-6}, \end{equation*} where the uncertainties are statistical, systematic and due to the uncertainty on the branching fraction of the J ⁣/ψ→Ό+Ό−J\mskip -3mu/\mskip -2mu\psi \to \mu^+\mu^- decay.The rare electromagnetic J/ψ→Ό+Ό−Ό+Ό−J/\psi \to \mu^+\mu^-\mu^+\mu^- decay is observed with a significance greatly exceeding the discovery threshold, using proton-proton collision data collected by the LHCb experiment during 2016-2018 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.4 fb−15.4\,\text{fb}^{-1}. The rate of this decay is measured relative to that of the J/ψ→Ό+Ό−J/\psi \to \mu^+\mu^- mode. Using the QED model for the four-muon decay in the efficiency estimation, its branching fraction is determined to be \begin{equation*} {\mathcal{B}}(J/\psi \to \mu^+\mu^-\mu^+\mu^-) = (1.13\pm0.10\pm0.05\pm0.01)\times 10^{-6}, \end{equation*} where the uncertainties are statistical, systematic and due to the uncertainty on the branching fraction of the J/ψ→Ό+Ό−J/\psi \to \mu^+\mu^- decay

    Measurement of exclusive J/ψJ/\psi and ψ(2S)\psi(2S) production at s=13\sqrt{s}=13 TeV

    No full text
    International audienceMeasurements are presented of the cross-section for the central exclusive production of J/ψ→Ό+Ό−J/\psi\to\mu^+\mu^- and ψ(2S)→Ό+Ό−\psi(2S)\to\mu^+\mu^- processes in proton-proton collisions at s=13\sqrt{s} = 13 TeV with 2016-2018 data. They are performed by requiring both muons to be in the LHCb acceptance (with pseudorapidity 2<ηΌ±<4.52<\eta_{\mu^\pm} < 4.5) and mesons in the rapidity range 2.0<y<4.52.0 < y < 4.5. The integrated cross-section results are \begin{equation*} \sigma_{J/\psi\to\mu^+\mu^-}(2.0<y_{J/\psi}<4.5,2.0<\eta_{\mu^\pm} < 4.5) = 400 \pm 2 \pm 5 \pm 12 \,{\rm pb}\,, \end{equation*}\begin{equation*} \sigma_{\psi(2S)\to\mu^+\mu^-}(2.0<y_{\psi(2S)}<4.5,2.0<\eta_{\mu^\pm} < 4.5) = 9.40 \pm 0.15 \pm 0.13 \pm 0.27 \,{\rm pb}\,, \end{equation*} where the uncertainties are statistical, systematic and due to the luminosity determination. In addition, a measurement of the ratio of ψ(2S)\psi(2S) and J/ψJ/\psi cross-sections, at an average photon-proton centre-of-mass energy of 1 TeV, is performed, giving \begin{equation*} \frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi}} = 0.1763 \pm 0.0029 \pm 0.0008 \pm 0.0039 \,, \end{equation*} where the first uncertainty is statistical, the second systematic and the third due to the knowledge of the involved branching fractions. For the first time, the dependence of the J/ψJ/\psi and ψ(2S)\psi(2S) cross-sections on the total transverse momentum transfer is determined in pppp collisions and is found consistent with the behaviour observed in electron-proton collisions
    • 

    corecore