10,430 research outputs found

    Multiparty quantum secret sharing with pure entangled states and decoy photons

    Full text link
    We present a scheme for multiparty quantum secret sharing of a private key with pure entangled states and decoy photons. The boss, say Alice uses the decoy photons, which are randomly in one of the four nonorthogonal single-photon states, to prevent a potentially dishonest agent from eavesdropping freely. This scheme requires the parties of communication to have neither an ideal single-photon quantum source nor a maximally entangled one, which makes this scheme more convenient than others in a practical application. Moreover, it has the advantage of having high intrinsic efficiency for qubits and exchanging less classical information in principle.Comment: 5 pages, no figure

    PixelLink: Detecting Scene Text via Instance Segmentation

    Full text link
    Most state-of-the-art scene text detection algorithms are deep learning based methods that depend on bounding box regression and perform at least two kinds of predictions: text/non-text classification and location regression. Regression plays a key role in the acquisition of bounding boxes in these methods, but it is not indispensable because text/non-text prediction can also be considered as a kind of semantic segmentation that contains full location information in itself. However, text instances in scene images often lie very close to each other, making them very difficult to separate via semantic segmentation. Therefore, instance segmentation is needed to address this problem. In this paper, PixelLink, a novel scene text detection algorithm based on instance segmentation, is proposed. Text instances are first segmented out by linking pixels within the same instance together. Text bounding boxes are then extracted directly from the segmentation result without location regression. Experiments show that, compared with regression-based methods, PixelLink can achieve better or comparable performance on several benchmarks, while requiring many fewer training iterations and less training data.Comment: AAAI-201

    PixelLink: Detecting Scene Text via Instance Segmentation

    Full text link
    Most state-of-the-art scene text detection algorithms are deep learning based methods that depend on bounding box regression and perform at least two kinds of predictions: text/non-text classification and location regression. Regression plays a key role in the acquisition of bounding boxes in these methods, but it is not indispensable because text/non-text prediction can also be considered as a kind of semantic segmentation that contains full location information in itself. However, text instances in scene images often lie very close to each other, making them very difficult to separate via semantic segmentation. Therefore, instance segmentation is needed to address this problem. In this paper, PixelLink, a novel scene text detection algorithm based on instance segmentation, is proposed. Text instances are first segmented out by linking pixels within the same instance together. Text bounding boxes are then extracted directly from the segmentation result without location regression. Experiments show that, compared with regression-based methods, PixelLink can achieve better or comparable performance on several benchmarks, while requiring many fewer training iterations and less training data.Comment: AAAI-201

    The effects of overtaking strategy in the Nagel-Schreckenberg model

    Full text link
    Based on the Nagel-Schreckenberg (NS) model with periodic boundary conditions, we proposed the NSOS model by adding the overtaking strategy (OS). In our model, overtaking vehicles are randomly selected with probability qq at each time step, and the successful overtaking is determined by their velocities. We observed that (i) traffic jams still occur in the NSOS model; (ii) OS increases the traffic flow in the regime where the densities exceed the maximum flow density. We also studied the phase transition (from free flow phase to jammed phase) of the NSOS model by analyzing the overtaking success rate, order parameter, relaxation time and correlation function, respectively. It was shown that the NSOS model differs from the NS model mainly in the jammed regime, and the influence of OS on the transition density is dominated by the braking probability ppComment: 9 pages, 20 figures, to be published in The European Physical Journal B (EPJB
    • …
    corecore