937 research outputs found

    Low-operating-voltage polymer thin-film transistors based on poly(3-hexylthiophene) with hafnium oxide as the gate dielectric

    Get PDF
    The effects of hafnium oxide (hboxHfO2)(hbox{HfO}-{2}) gate dielectric annealing treatment in oxygen (hboxO2)(hbox{O}-{2}) and ammonia (hboxNH3)(hbox{NH}-{3}) ambient on the electrical performance of polymer thin-film transistors (PTFTs) based on poly(3-hexylthiophene) are investigated. The PTFTs with hboxHfO2hbox{HfO}-{2} gate dielectric and also octadecyltrichlorosilane surface modification, prepared by spin-coating process, exhibit good performance, such as a small threshold voltage of -0.5 V and an operating voltage as low as -4 V. Results indicate that the PTFT with hboxNH3hbox{NH}-{3}-annealed hboxHfO2 hbox{HfO}-{2} shows higher carrier mobility, larger on/off current ratio, smaller subthreshold swing, and lower threshold voltage than the PTFT with hboxO2hbox{O}-{2}-annealed hboxHfO2 hbox{HfO}-{2}. Capacitancevoltage analysis for metal-polymer-oxide-silicon structures indicates that the better electrical performance of the PTFT with hboxNH3hbox{NH}-{3} -annealed hboxHfO2hbox{HfO}-{2} is attributed to improved dielectric/polymer interface and reduced series resistance in the transistor. © 2006 IEEE.published_or_final_versio

    Improved performance of pentacene OTFTs with HfLaO gate dielectric by using fluorination and nitridation

    Get PDF
    Pentacene organic thin-film transistors (OTFTs) with fluorinated high-κ HfLaO as gate insulator were fabricated. The dielectrics were prepared by sputtering method and then annealed in N 2 or NH 3 at 400 °C. Subsequently, the dielectrics were treated by fluorine plasma for different durations (100, 300, and 900 s). The N 2 and NH 3-annealed OTFTs with a 100-s plasma treatment achieve a carrier mobility of 0.62 and 0.66 cm 2V̇s, respectively, which are higher than those of the OTFTs without plasma treatment (0.22 and 0.41 cm 2V̇s). Moreover, the plasma-treated OTFTs realize better 1/f noise characteristics than those without plasma treatment. The improved performance is due to passivation of the dielectric surface by plasma-induced fluorine incorporation. However, for longer time (300 and 900 s) of plasma treatment, the performance of the OTFTs deteriorates in terms of carrier mobility and 1/f noise characteristics due to increased plasma-induced damage of the dielectric surface. The morphology of the pentacene film grown on the HfLaO gate insulator was characterized by SEM. It reveals that the pentacene film has larger grain size and smoother surface on the HfLaO dielectric (for both annealing gases) with 100-s plasma treatment than the others (0, 300, and 900 s). Finally, AFM characterization of the HfLaO film also confirms the damaging effect of excessive plasma treatment on the dielectric. © 2012 IEEE.published_or_final_versio

    Low-voltage polymer thin-film transistors with high-k HfTiO gate dielectric annealed in NH3 or N2

    Get PDF
    OTFTs with P3HT as organic semiconductor and HfTiO as gate dielectric have been studied in this work. The HfTiO dielectric film was prepared by RF sputtering of Hf and DC sputtering of Ti at room temperature. Subsequently, the dielectric film was annealed in an NH3 or N2 ambient at 200 °C. Then a layer of OTS was deposited by spin-coating method to improve the surface characteristics of the gate dielectric. Afterwards, P3HT was deposited by spin-coating method. The OTFTs were characterized by I-V measurement and 1/f noise measurement. The OTFT with gate dielectric annealed in NH3 displays higher carrier mobility, smaller threshold voltage, smaller sub-threshold swing, and lower 1/f noise level than the OTFT annealed in N2. Moreover, the HfTiO dielectric film annealed in NH3 shows higher dielectric constant. In summary, HfTiO film annealed in NH 3 at low temperature is a promising candidate to act as the gate dielectric of high-quality low-voltage OTFTs. ©2009 IEEE.published_or_final_versionThe IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC 2009), Xi'an, China, 25-27 December 2009. In Proceedings of EDSSC, 2009, p. 201-20

    Effects of annealing temperature and gas on pentacene OTFTs with HfLaO as gate dielectric

    Get PDF
    Pentacene organic thin-film transistors (OTFTs) with high-κ HfLaO as gate insulator were fabricated. HfLaO film was prepared by sputtering method. To improve the film quality, the dielectric was annealed in N 2, NH 3, or O 2 at two temperatures, i.e., 200 °C and 400 °C, respectively. The I-V characteristics of the OTFTs and C-V characteristics of corresponding organic capacitors were measured. The OTFTs could operate at a low operating voltage of below 5 V, and the dielectric constant of the HfLaO film could be above ten. For all the annealing gases, the OTFTs annealed at 400 °C achieved higher carrier mobility than their counterparts annealed at 200 °C (with the one annealed in NH 3 at 400 °C showing the highest carrier mobility of 0.45 cm 2/ V·s), which could be supported by SEM images which indicate that pentacene tended to form larger grains on HfLaO annealed at 400 °C than on that annealed at 200 °C. The C-V measurement of the organic capacitors indicated that the localized charge density in the organic semiconductor/oxide was lower for the 400 °C annealing than for the 200 °C annealing. Furthermore, through the characterization of gate current leakage, HfLaO film annealed at 400 °C achieved much smaller leakage than that annealed at 200 °C. Since the maximum processing temperature of ITO glass substrates is around 400 °C , this study shows that 400 °C is suitable for the annealing of HfLaO film in high-performance OTFTs on glass substrate. © 2011 IEEE.published_or_final_versio

    Pentacene thin-film transistors with HfO2 gate dielectric annealed in NH3 or N2O

    Get PDF
    Pentacene-based Organic Thin-Film Transistor (OTFT) with HfO 2 as gate dielectric is studied in this work. The HfO2 dielectric was prepared by RF sputtering at room temperature, and subsequently annealed in N 2O or NH 3 at 200 °C. The OTFTs were characterized by IV measurement and 1/f noise measurement. The OTFTs show small threshold voltage and can operate at as low as 3 V. Results indicate that the OTFT annealed in NH 3 shows higher carrier mobility, larger on/off current ratio, smaller sub-threshold swing and smaller Hooge parameter than the OTFT annealed in N 2O. Therefore, NH 3-annealed HfO 2 is a promising gate dielectric for the fabrication of high-performance OTFTs. © 2008 IEEE.published_or_final_versio

    Effects of different annealing gases on pentacene OTFT with HfLaO gate dielectric

    Get PDF
    Pentacene organic thin-film transistors (OTFTs) with HfLaO high-kappa gate dielectric were fabricated. The dielectric was prepared by a sputtering method and then annealed in N2,NH3,O2, or NO at 400°C. The carrier mobility of the NH3-annealed OTFT could reach 0.59 cm2/V̇s, which is higher than those of the other three devices. Moreover, the NH3-annealed OTFT obtained the smallest subthreshold swing of 0.26 V/dec among them. Furthermore,1/f noise measurement indicated that the NH3-annealed OTFT achieved the smallest 1/f noise. All these should be attributed to the improved interface between the gate dielectric and the organic semiconductor associated with the passivation effects of the NH3 annealing on the dielectric surface. © 2010 IEEE.published_or_final_versio

    Failure detection of closed-loop systems and application to SI engines

    Get PDF
    The existing methods of engine fault detection and isolation are based on open-loop control, which are not applicable to closed-loop control systems. In this paper a new fault detection and isolation method for closed-loop control systems is presented. The validity of this method is verified by simulation results. First, the method was tested on the nonlinear simulation of SI engines, the Mean Value Engine Model (MVEM) with different faults was simulated. The neural network based engine air path model was constructed, which was trained with engine input/output data. Then Radial Basis Function (RBF) neural network was used to model the SI engine. The drawback of the training data acquisition was analyzed and a new data acquisition method was proposed, that greatly improved the model accuracy. © 2017, Editorial Board of Jilin University. All right reserved

    Human Bocavirus NS1 and NS1-70 Proteins Inhibit TNF-α-Mediated Activation of NF-κB by targeting p65.

    Get PDF
    Human bocavirus (HBoV), a parvovirus, is a single-stranded DNA etiologic agent causing lower respiratory tract infections in young children worldwide. Nuclear factor kappa B (NF-κB) transcription factors play crucial roles in clearance of invading viruses through activation of many physiological processes. Previous investigation showed that HBoV infection could significantly upregulate the level of TNF-α which is a strong NF-κB stimulator. Here we investigated whether HBoV proteins modulate TNF-α-mediated activation of the NF-κB signaling pathway. We showed that HBoV NS1 and NS1-70 proteins blocked NF-κB activation in response to TNF-α. Overexpression of TNF receptor-associated factor 2 (TRAF2)-, IκB kinase alpha (IKKα)-, IκB kinase beta (IKKβ)-, constitutively active mutant of IKKβ (IKKβ SS/EE)-, or p65-induced NF-κB activation was inhibited by NS1 and NS1-70. Furthermore, NS1 and NS1-70 didn't interfere with TNF-α-mediated IκBα phosphorylation and degradation, nor p65 nuclear translocation. Coimmunoprecipitation assays confirmed the interaction of both NS1 and NS1-70 with p65. Of note, NS1 but not NS1-70 inhibited TNF-α-mediated p65 phosphorylation at ser536. Our findings together indicate that HBoV NS1 and NS1-70 inhibit NF-κB activation. This is the first time that HBoV has been shown to inhibit NF-κB activation, revealing a potential immune-evasion mechanism that is likely important for HBoV pathogenesis

    The Slow-Releasing Hydrogen Sulfide Donor, GYY4137, Exhibits Novel Anti-Cancer Effects In Vitro and In Vivo

    Get PDF
    The slow-releasing hydrogen sulfide (H2S) donor, GYY4137, caused concentration-dependent killing of seven different human cancer cell lines (HeLa, HCT-116, Hep G2, HL-60, MCF-7, MV4-11 and U2OS) but did not affect survival of normal human lung fibroblasts (IMR90, WI-38) as determined by trypan blue exclusion. Sodium hydrosulfide (NaHS) was less potent and not active in all cell lines. A structural analogue of GYY4137 (ZYJ1122) lacking sulfur and thence not able to release H2S was inactive. Similar results were obtained using a clonogenic assay. Incubation of GYY4137 (400 µM) in culture medium led to the generation of low (<20 µM) concentrations of H2S sustained over 7 days. In contrast, incubation of NaHS (400 µM) in the same way led to much higher (up to 400 µM) concentrations of H2S which persisted for only 1 hour. Mechanistic studies revealed that GYY4137 (400 µM) incubated for 5 days with MCF-7 but not IMR90 cells caused the generation of cleaved PARP and cleaved caspase 9, indicative of a pro-apoptotic effect. GYY4137 (but not ZYJ1122) also caused partial G2/M arrest of these cells. Mice xenograft studies using HL-60 and MV4-11 cells showed that GYY4137 (100–300 mg/kg/day for 14 days) significantly reduced tumor growth. We conclude that GYY4137 exhibits anti-cancer activity by releasing H2S over a period of days. We also propose that a combination of apoptosis and cell cycle arrest contributes to this effect and that H2S donors should be investigated further as potential anti-cancer agents
    corecore