32,541 research outputs found

    The asymmetric structure of the Galactic halo

    Full text link
    Using the stellar photometry catalogue based on the latest data release (DR4) of the Sloan Digital Sky Survey (SDSS), a study of the Galactic structure using star counts is carried out for selected areas of the sky. The sample areas are selected along a circle at a Galactic latitude of +60∘^\circ, and 10 strips of high Galactic latitude along different longitudes. Direct statistics of the data show that the surface densities of ℓ\ell from 180∘180^{\circ} to 360∘360^{\circ} are systematically higher than those of ℓ\ell from 0∘0^{\circ} to 180∘180^{\circ}, defining a region of overdensity (in the direction of Virgo) and another one of underdensity (in the direction of Ursa Major) with respect to an axisymmetric model. It is shown by comparing the results from star counts in the (g−r)(g-r) colour that the density deviations are due to an asymmetry of the stellar density in the halo. Theoretical models for the surface density profile are built and star counts are performed using a triaxial halo of which the parameters are constrained by observational data. Two possible reasons for the asymmetric structure are discussed.Comment: 17 pages, 7 figures, 5 tables, MNRAS accepte

    High-Fidelity Archeointensity Results for the Late Neolithic Period From Central China

    Get PDF
    Archeomagnetism focuses on exploring high-resolution variations of the geomagnetic field over hundreds to thousands of years. In this study, we carried out a comprehensive study of chronology, absolute and relative paleointensity on a late Neolithic site in central China. Ages of the samples are constrained to be ~3,500–3,000 BCE, a period when available paleointensity data are sparse. We present a total of 64 high-fidelity absolute paleointensities, demonstrating the field varied quickly from ~55 to ~90 ZAm2 between ~3,500–3,000 BCE. Our results record a new archeomagnetic jerk around 3,300 BCE, which is probably non-dipolar origin. The new results provide robust constraints on global geomagnetic models. We calculated a revised Chinese archeointensity reference curve for future application. The variations of absolute and relative paleointensity versus depth show good consistency, reinforcing the reliability of our results. This new attempt of combining absolute and relative paleointenstiy provides a useful tool for future archeomagnetic research

    New Consequences of Induced Transparency in a Double-Lambda scheme: Destructive Interference In Four-wave Mixing

    Full text link
    We investigate a four-state system interacting with long and short laser pulses in a weak probe beam approximation. We show that when all lasers are tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM) field is strongly absorbed. The part which is not absorbed has the exact intensity required to destructively interfere with the excitation pathway involved in producing the FWM state. We show that with this three-photon destructive interference, the conversion efficiency can still be as high as 25%. Contrary to common belief,our calculation shows that this process, where an ideal one-photon electromagnetically induced transparency is established, is not most suitable for high efficiency conversion. With appropriate phase-matching and propagation distance, and when the three-photon destructive interference does not occur, we show that the photon flux conversion efficiency is independent of probe intensity and can be close to 100%. In addition, we show clearly that the conversion efficiency is not determined by the maximum atomic coherence between two lower excited states, as commonly believed. It is the combination of phase-matching and constructive interference involving the two terms arising in producing the mixing wave that is the key element for the optimized FWM generation. Indeed, in this scheme no appreciable excited state is produced, so that the atomic coherence between states |0> and |2> is always very small.Comment: Submitted to Phys. Rev. A, 7 pages, 4 figure

    Disk stars in the Milky Way detected beyond 25 kpc from its center

    Full text link
    CONTEXT. The maximum size of the Galactic stellar disk is not yet known. Some studies have suggested an abrupt drop-off of the stellar density of the disk at Galactocentric distances R≳15R\gtrsim 15 kpc, which means that in practice no disk stars or only very few of them should be found beyond this limit. However, stars in the Milky Way plane are detected at larger distances. In addition to the halo component, star counts have placed the end of the disk beyond 20 kpc, although this has not been spectroscopically confirmed so far. AIMS. Here, we aim to spectroscopically confirm the presence of the disk stars up to much larger distances. METHODS. With data from the LAMOST and SDSS-APOGEE spectroscopic surveys, we statistically derived the maximum distance at which the metallicity distribution of stars in the Galactic plane is distinct from that of the halo populations. RESULTS. Our analysis reveals the presence of disk stars at R>26 kpc (99.7% C.L.) and even at R>31 kpc (95.4% C.L.).Comment: 4 pages, accepted to be published in A&A-Letter

    Generation of N-qubit W state with rf-SQUID qubits by adiabatic passage

    Get PDF
    A simple scheme is presented to generate n-qubit W state with rf-superconducting quantum interference devices (rf-SQUIDs) in cavity QED through adiabatic passage. Because of the achievable strong coupling for rf-SQUID qubits embedded in cavity QED, we can get the desired state with high success probability. Furthermore, the scheme is insensitive to position inaccuracy of the rf-SQUIDs. The numerical simulation shows that, by using present experimental techniques, we can achieve our scheme with very high success probability, and the fidelity could be eventually unity with the help of dissipation.Comment: to appear in Phys. Rev.
    • …
    corecore