16 research outputs found

    Explicit Attention-Enhanced Fusion for RGB-Thermal Perception Tasks

    Full text link
    Recently, RGB-Thermal based perception has shown significant advances. Thermal information provides useful clues when visual cameras suffer from poor lighting conditions, such as low light and fog. However, how to effectively fuse RGB images and thermal data remains an open challenge. Previous works involve naive fusion strategies such as merging them at the input, concatenating multi-modality features inside models, or applying attention to each data modality. These fusion strategies are straightforward yet insufficient. In this paper, we propose a novel fusion method named Explicit Attention-Enhanced Fusion (EAEF) that fully takes advantage of each type of data. Specifically, we consider the following cases: i) both RGB data and thermal data, ii) only one of the types of data, and iii) none of them generate discriminative features. EAEF uses one branch to enhance feature extraction for i) and iii) and the other branch to remedy insufficient representations for ii). The outputs of two branches are fused to form complementary features. As a result, the proposed fusion method outperforms state-of-the-art by 1.6\% in mIoU on semantic segmentation, 3.1\% in MAE on salient object detection, 2.3\% in mAP on object detection, and 8.1\% in MAE on crowd counting. The code is available at https://github.com/FreeformRobotics/EAEFNet

    The Ets Transcription Factor GABP Is a Component of the Hippo Pathway Essential for Growth and Antioxidant Defense

    Get PDF
    这是周大旺教授继2009年首次发现了Hippo信号通路在哺乳动物中控制器官大小及肿瘤发生具有重要作用后的又一重大研究成果,该研究系统阐述了 YAP基因在转录调控水平上的的调控机理,进一步完善了人们对Hippo信号通路的认识,也为由YAP调控异常所引发的癌症提供了一个潜在的治疗靶点。 该论文的第一作者为博士生吴黉坦和硕士生肖玉波和张世浩, 通讯作者是周大旺教授和陈兰芬副教授,该工作是与厦门市中医院、中山医院和医学高等专科学校等单位合作完成的。周大旺教授是中央首批“青年千人计划”入选者并获得国家首批“优秀青年科学基金”资助。The transcriptional coactivator Yes-associated protein (YAP) plays an important role in organ-size control and tumorigenesis. However, how Yap gene expression is regulated remains unknown. This study shows that the Ets family member GABP binds to the Yap promoter and activates YAP transcription. The depletion of GABP downregulates YAP, resulting in a G1/S cell-cycle block and increased cell death, both of which are substantially rescued by reconstituting YAP. GABP can be inactivated by oxidative mechanisms, and acetaminophen-induced glutathione depletion inhibits GABP transcriptional activity and depletes YAP. In contrast, activating YAP by deleting Mst1/Mst2 strongly protects against acetaminophen-induced liver injury. Similar to its effects on YAP, Hippo signaling inhibits GABP transcriptional activity through several mechanisms. In human liver cancers, enhanced YAP expression is correlated with increased nuclear expression of GABP. Therefore, we conclude that GABP is an activator of Yap gene expression and a potential therapeutic target for cancers driven by YAP

    Absolute phase recovery of three fringe patterns with selected spatial frequencies

    Get PDF
    A new temporal approach is presented for the recovery of the absolute phase maps from their wrapped versions based on the use of fringe patterns of three different spatial frequencies. In contrast to the two-frequency method recently published, the method proposed is characterized by better anti-error capability as measured by phase error tolerance bound. A general rule for the selection of the three frequencies is presented, and its relationship to the phase error tolerance bound is derived. Theoretical analysis and experimental results are also presented to validate the effectiveness of the proposed three frequency technique

    Computational surface profilometry and its applications in semiconductor inspection

    No full text
    Non-contact surface profilometry techniques, especially the phase-measuring profilometry, have been evolved dramatically over recent years. Besides the simple triangulation configuration with a fringe pattern projection system and digital imaging system, efficient computational surface profilometry techniques have also drawn tremendous attention from both academia and a wide range of applications. In the semiconductor industry, high-precision and high-speed, automated optical inspection systems are urgently needed to ensure high quality of semiconductor devices and yield improvement on the production and assembly line. However, by assuming the measured object to be stationary, conventional approaches are not suitable for surface profilometry of moving objects. Moreover, different sources of error such as the low contrast fringe patterns on the measured object, the unevenness in the illumination and the perspective projection effect from the optics will decrease the performance of surface profilometry. To meet these challenges, we have built fringe pattern projection prototypes with projector and camera arrays for surface profilometry of moving objects along the conveyor belt. This design helps to enlarge the field of view with parallel processing. In addition, we have presented an optimization framework to investigate the sources of the error for surface profilometry and generalize various computational surface profilometry approaches under different scenarios. Under this framework, first, we investigate two important factors determining the precision of surface profilometry, namely, the condition number of the phaseshift matrix and the fringe contrast within the images of the projected fringe patterns. Then, a regularized phase-shift algorithm has been proposed to improve the reconstruction results at the low contrast regions such as on the substrate of the semiconductor devices. Second, we study the intensity fluctuation caused by the uneven illumination for surface profilometry of moving objects. After that, an illumination-reflectivity-focus model has been suggested to describe the unevenness and an illumination-invariant phase-shift algorithm has been developed to handle this uneven illumination effect. Third, the perspective projection effect from the optics also affects the accurate phase-shift estimation for a moving object. Therefore, we propose a general polynomial phase-measuring profilometry model to establish the relationship between the phase-shift and height variation for each measured point. Accordingly, a polynomial phase-shift algorithm with error compensation technique has been put forward to improve the performance of the surface profilometry for moving objects. Both simulation and real experiments from the prototype have been conducted to verify the improvement on the performance of the proposed methodologies. Furthermore, these research results have demonstrated the effectiveness and efficiency of the presented optimization framework for investigating the sources of error for surface profilometry. Moreover, the proposed computational surface profilometry techniques and the corresponding fringe pattern projection systems have been used in automated optical inspection systems for yield improvement on the production line in the semiconductor industry.published_or_final_versionElectrical and Electronic EngineeringDoctoralDoctor of Philosoph

    Recovering the absolute phase maps of three selected spatial-frequency fringes with multi-color channels

    No full text
    In a recent published work, we developed the technique to enhance the reliability of absolute phase maps by using the fringes of three spatial frequencies. However, it is time-consuming to capture the fringe images of three spatial frequencies with single channel in time sequence. To increase the efficiency of our proposed three-frequency technology, in this paper we propose a method to capture the fringe images of three spatial frequencies with multi-color channels and 3CCD camera. The projected spatial frequencies can be selected to guarantee the correctness of recovered fringe orders and avoid the chromatic aberration effect on frequency distortion. The cross talk among color channels can be eliminated effectively and the measured object can be reconstructed with high accuracy. The effectiveness of this method is verified by experimental results

    Multiple spatial-frequency fringes selection for absolute phase recovery

    No full text
    In a recent published work we develop the technique to enhance the reliability of absolute phase maps by using the fringes of three spatial frequencies. The rules of selecting three spatial-frequency fringes and its relationship with phase error tolerance bound have been presented, but the general case of multiple spatial-frequency fringes has not been fully discussed. In this paper, we present the general rules to select the multiple spatial-frequency fringes for absolute phase maps recovery and its strategy to increase phase error tolerance bound. These theoretical conclusions are verified by experimental results

    Stress Intensity Factors for Radial Crack on Inner Surface of Interface in Multi-Layer Rotating Thick-Walled Cylinder

    No full text
    Cracks often appear on the inner surface of metal thick-walled cylinders with multiple interference fits. Considering that no relatively accurate model exists for the cracks on the interface of multi-layered, rotating, thick-walled cylinders, in this paper, the stress intensity factor is established for a radial penetrating crack on the interface of a multi-layered, rotating, thick-walled cylinder. The parameters included in the equation are the rotation speed, the wall thickness ratio, and the interference. First, finite element software is used to calculate the stress intensity factors of two thick-walled cylinders under an interference fit with a crack on the interface. Then, the equation of the stress intensity factor is fitted with the parameters of contact pressure, crack depth, and wall thickness ratio. Next, the weight function is used to calculate the stress intensity factor for radial penetrating cracks on the inner surface of the cylinder’s interface. Finally, 2D finite element models of the four-layer cylinder with a crack are established to verify the equation

    Stress Intensity Factors for Radial Crack on Inner Surface of Interface in Multi-Layer Rotating Thick-Walled Cylinder

    No full text
    Cracks often appear on the inner surface of metal thick-walled cylinders with multiple interference fits. Considering that no relatively accurate model exists for the cracks on the interface of multi-layered, rotating, thick-walled cylinders, in this paper, the stress intensity factor is established for a radial penetrating crack on the interface of a multi-layered, rotating, thick-walled cylinder. The parameters included in the equation are the rotation speed, the wall thickness ratio, and the interference. First, finite element software is used to calculate the stress intensity factors of two thick-walled cylinders under an interference fit with a crack on the interface. Then, the equation of the stress intensity factor is fitted with the parameters of contact pressure, crack depth, and wall thickness ratio. Next, the weight function is used to calculate the stress intensity factor for radial penetrating cracks on the inner surface of the cylinder’s interface. Finally, 2D finite element models of the four-layer cylinder with a crack are established to verify the equation
    corecore