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Abstract:  A new temporal approach is presented for the recovery of the 
absolute phase maps from their wrapped versions based on the use of the 
fringe patterns of three different spatial frequencies.  In contrast to the two-
frequency method recently published, the method proposed is characterized 
by better anti-error capability as measured by phase error tolerance bound.    
A general rule for the selection of the three frequencies is presented, and its 
relationship to the phase error tolerance bound is derived.  Theoretical 
analysis and experimental results are also presented to validate the 
effectiveness of the proposed three frequency technique.  

 

OCIS codes (Key words): (100.2650) Fringe analysis; (050.5080) Phase shift; (150.6910) Three-
dimensional sensing; (100.5088) Phase unwrapping; (120.6650) Surface measurements.  

 

1. Introduction  

Fringe projection profilometry (FPP) is one of the most promising technologies for non-contact 
3D shape measurement. A challenging task associated with existing phase measurement 
technique in FPP is phase unwrapping operation, which aims to recover the absolute phase maps 
from the wrapped phase maps. Existing phase unwrapping methods include spatial [1], temporal 
[2, 3], and period coding [4].  However, recovery of absolute phase maps is still a challenging 
task when the wrapped phase maps contain noise, sharp changes or discontinuities [5]. 

To achieve reliable and accurate phase unwrapping for FPP, a variety of temporal phase 
unwrapping approaches have been proposed following work of Huntley and Saldner [2]. The 
general idea behind this temporal method is that multiple fringe patterns are projected onto the 
object, yielding a sequence of wrapped phase maps as a function of time t. These phase maps 

can be considered as a 3D phase map ( , , )m n tφ , denoting the wrapped phase value at pixel ( , )m n  

at the tth phase map (t=0, 1, 2, …, s). Phase unwrapping can be carried out along any path in the 
3D space in order to avoid noise or boundaries and thus achieving correct recovery of the 
absolute phase map. While the method proposed in [2] is demonstrated to be effective for 
accurate phase unwrapping, it also suffers from the drawback of requiring many intermediate 
phase patterns (e.g., 7 sets of fringe patterns were employed in [2]), which is obviously not 
suitable for fast or real-time measurement. In order to increase the efficiency, Zhao, et al. [3] 
propose to use two image patterns, one of which has a very low spatial frequency in contrast to 
the other. In particular, the low spatial frequency pattern only has a single fringe.  Such a pattern 

has its absolute phase value falling within the range ( , )π π− , and hence can be used as a 

reference to calculate the fringe number of the other fringe pattern, thus yielding its absolute 
phase map. Li, et al. [5, 6] also employ the phase map of single fringe pattern as reference to 
unwrap high spatial frequency fringe patterns, and it is shown that the spatial frequency of the 
pattern to be unwrapped is determined by the level of noise.  Following the same method in [5], 
Liu, et al. [7] project a single fringe pattern and a high frequency pattern in one shot to 



accelerate the speed of 3D measurement. These method works well in principle, but the gap 
between two spatial frequencies should be restricted within a range based on the noise level or 
steps in the low frequency phase maps. As the accuracy performance of FPP requires the use of 
high frequency fringe patterns, these methods may not work well when the phase maps are 
noisy or discontinuous. Consequently, multiple intermediate image patterns are still required in 
order to reduce the frequency gaps among adjacent patterns.  Saldner and Huntley [8, 9] study 
the multiple intermediate image patterns, showing that to unwrap a phase map of frequency f,  

2log 1f +  sets of fringe patterns are required. A similar result is also reached by Zhang [10, 11], 

indicating that the spatial frequency can be increased by a factor of 2 between two adjacent 
patterns. Taking a typical FPP arrangement as an example where the image pattern has 16 
fringes, 5 image patterns are still required with this approach.  

In order to recover the absolute phase maps of high spatial frequency fringes with less number 
of fringe patterns, we have developed a temporal phase unwrapping technique based on the use 
of two fringe images with two selected frequencies [12]. When the two normalized spatial 

frequencies 
1f and 

2f  are coprime, there exists a one-to-one map from 
2 1 1 2[ ( ) ( )] 2f x f xφ φ π−  to 

their fringe orders, where 
1( )xφ , 

2 ( )xφ  are the wrapped phase maps.  We also obtain the minimal 

value gap of 
2 1 1 2[ ( ) ( )] 2f x f xφ φ π−  when 

1f and 
2f  are coprime. However, the performance of the 

proposed method in [12] is limited by phase error tolerance bound, 
1 2( )f fπ +  [13].  If the phase 

error of wrapped phase maps is larger than the phase error bound, errors may occur in the 
recovery of the absolute phase maps.  As demonstrated by the experiments in [13], phase errors 
in many practical situations are significant and can easily exceed the bound, leading to the 
failure in recovering the absolute phase map.  Therefore, it is desirable to develop new 
approaches with the aim to increase phase error tolerance bound. To this end, we propose a 
method based on the projection of three fringe patterns with selected frequencies.   The idea is 
that with  the use of three spatial fringe patterns,  the minimal value gap on the values of 

2 1 1 2[ ( ) ( )] 2f x f xφ φ π− can be increased to higher than one, resulting in a higher phase error 

tolerance bound. 
Zhong, et al. [14] also constructed a look-up table to unwrap the absolute phase maps for 

multiple-spatial-frequency fringes.  This look-up table denotes the corresponding relationship 

from a pair of fringe orders at two spatial frequencies (
1

f ,
2

f ) to 
2 1 1 2[ ( ) ( )] 2f x f xφ φ π− .  When 

the spatial frequencies 
1f and 

2f  are large values, one value in 
2 1 1 2[ ( ) ( )] 2f x f xφ φ π−  may 

correspond to two or more pairs of fringe orders, thus the fringe orders can not be determined 

uniquely.  To make sure the values of  
2 1 1 2[ ( ) ( )] 2f x f xφ φ π−  unique, Zhong, et al. [15] proposed 

to use relatively irrational spatial frequencies for the wrapped phase maps, that is, 
1

3f = , 

2
5f = , 

3
3 2 / 2f =  (not the normalized spatial frequencies).  To apply the relatively irrational 

frequencies, Zhong [16] proposed to generate the two relatively irrational spatial frequencies 
fringes by changing the projection angle of the grating.  However, the spatial frequency 
selection in [14] does not guarantee the one-to-one map from 

2 1 1 2[ ( ) ( )] 2f x f xφ φ π−  to a pair of 

fringe orders, thus the dynamic measurement range is smaller than the section of pattern image 

[15].  Furthermore, the minimal value gap of 
2 1 1 2[ ( ) ( )] 2f x f xφ φ π−  of two irrational frequencies 

is always smaller than the two rational frequencies [14, 15, 16], which may yield mistakes in 
determining fringe order pairs.  Our proposed method could guarantee the one-to-one map and 

increase the minimal value gap of [ ( ) ( )] 2j i i jf x f xφ φ π−  significantly to enhance the reliability of 

absolute phase maps. 

This paper is organized as follows. In Section 2 we present the technique to recover the 
absolute phase maps with three selected frequency fringe patterns. In Section 3, we give the 
principle to increase the smallest value gap by selecting frequencies. In Section 4, experiments 
are presented to validate the effectiveness of three frequency technique and the principle to 
increase the value gap. Section 5 concludes the whole paper.  



2. Absolute phase maps recovery with three frequency fringe patterns 

2.1 Three frequency technique 

Let us consider a FPP system, with which three image patterns are projected onto the object 
surface respectively.  The image patterns are characterized by fringe structure where the light 
intensity is constant in y-axis and varies sinusoidally in x-axis.  The normalized spatial 
frequencies of the three patterns are

1f , 
2f  and 

3f , referring to the total number of fringes on the 

respective patterns. Let us use ( )i xΦ  (i=1,2,3) and ( )i xφ  (i=1,2,3) to denote respectively the 

absolute phase maps and the corresponding wrapped phase maps of the fringe patterns.    Taking 
the central vertical line of images as the reference, the value of the wrapped phase map is 
limited by ( )i xπ φ π− ≤ ≤  (i=1,2,3), and the value of the absolute phase maps should fall into the 

following: 

1 1 1( )f x fπ π− ≤ Φ ≤ ,  
2 2 2( )f x fπ π− ≤ Φ ≤ ,  

3 3 3( )f x fπ π− < Φ <                    (1) 

     Hence the absolute and wrapped phase maps are related by the following: 

( ) 2 ( ) ( )i i ix m x xπ φΦ = +                                                      (2) 

Where ( )im x (i=1,2,3) are referred to as fringe numbers or indices. They are integers and 

2 ( ) 2i i if m x f− < <        (i=1,2,3).  Obviously, the absolute phases can be recovered if 

( )im x (i=1,2,3) are determined.     In order to achieve this, we employ the following 

relationships [10]: 

2 1 1 2( ) ( )f x f xΦ = Φ , 
3 1 1 3( ) ( )f x f xΦ = Φ                                          (3) 

Combining Equations (2) and (3), we have: 

2 1 1 2
2 1 1 2

( ) ( )
( ) ( )

2

f x f x
m x f m x f

φ φ
π
−

= − , 3 1 1 3
3 1 1 3

( ) ( )
( ) ( )

2

f x f x
m x f m x f

φ φ
π
−

= −             (4) 

Similar to the method employed in [12, 13], an intermediate variable 
0 ( )xΦ  is introduced, 

which increases monotonically from π−  to π  with respect to x  and defined as follows: 

1 2 3
0

1 2 3

( ) ( ) ( )
( )

x x x
x

f f f

Φ Φ Φ
Φ = = =                                            (5) 

Considering 
0 1 1( ) ( )x x fΦ = Φ  and taking account of Equation (1), ( )

i
m x (i=1,2,3) can be 

determined by the value of 
0 ( )xΦ as follows:  

     

1 1 1 1 0

1 0 1

1 1 0 1

1 0 1

1 0 1 1 1

2 [ ( mod 2 1)] ( )

... ...

1 ( ) 3

( ) .. 0 ( )

1 3 ( )

... ...

2 ( ) [ ( mod 2 1)]

f f f f x

f x f

m x f x f

f x f

f x f f f

π π

π π
π π
π π

π π

 − + ≤ Φ <  


 ≤ Φ <


= − < Φ <
 − − ≤ Φ < −

 − − < Φ ≤ − − +  

                            (6) 

   

2 2 2 2 0

2 0 2

2 2 0 2

2 0 2

2 0 2 2 2

/ 2 [ ( mod 2 1)] / ( )

... ...

1 / ( ) 3 /

( ) 0 / ( ) /

1 3 / ( ) /

... ...

/ 2 ( ) [ ( mod 2 1)] /

f f f f x

f x f

m x f x f

f x f

f x f f f

π π

π π
π π
π π

π π

 − + ≤ Φ <  


 ≤ Φ <


= − < Φ <
 − − < Φ ≤ −

− − < Φ ≤ − − +  

                             (7) 



3 3 3 3 0

3 0 3

3 3 0 3

3 0 3

3 0 3 3 3

/ 2 [ ( mod 2 1)] / ( )

... ...

1 / ( ) 3 /

( ) 0 / ( ) /

1 3 / ( ) /

... ...

/ 2 ( ) [ ( mod 2 1)] /

f f f f x

f x f

m x f x f

f x f

f x f f f

π π

π π
π π
π π

π π

 − + ≤ Φ <  


 ≤ Φ <


= − < Φ <
 − − < Φ ≤ −

− − < Φ ≤ − − +  

                             (8) 

where x    denotes the operation of taking the largest integer not greater than x .  

Equations (6-8) give a unique mapping from 
0 ( )xΦ  to ( )im x  (i=1,2,3), implying that 

0 ( )xΦ  

can be employed to determine ( )im x  (i=1,2,3), but 
0 ( )xΦ  is not available.  However, combining 

the right hand side of Equations (6-8) we can see that the value of 
0 ( )xΦ  can be divided into 

many small intervals, each of which corresponds to particular set of ( )im x  (i=1,2,3). Then if 

there is an unique mapping from 
1 3 3 1( ) ( )m x f m x f−  and 

3 2 2 3( ) ( )m x f m x f−  to the intervals, we can 

establish a mapping relationship from 
3 1 1 3[ ( ) ( )] 2f x f xφ φ π−  and 

3 2 2 3[ ( ) ( )] 2f x f xφ φ π−  to ( )im x  

(i=1,2,3), and the relationship can be used to determine the latter. In order to illustrate the 
effectiveness of such an idea, let us consider an example where 

1 6f =  , 
2 10f =  and 

3 15f = . 

From Equations (6-8) we can derive the following relationship in Table 1. The first column in 
Table 1 gives the intervals of 

0 ( )xΦ , covering the whole range
0 ( )xπ π− < Φ < . The second 

column shows the values of ( )
i

m x  (i=1,2,3) corresponding to each of the intervals, and the third 

and fourth column give the corresponding values of 
3 1 1 3[ ( ) ( )] 2f x f xφ φ π−  and 

3 2 2 3[ ( ) ( )] 2f x f xφ φ π− . It is seen that each row on the table gives a mapping from 

3 1 1 3[ ( ) ( )] 2f x f xφ φ π−  and 
3 2 2 3[ ( ) ( )] 2f x f xφ φ π−  to ( )

i
m x  (i=1,2,3), which is different from others 

and hence unique.   Therefore, if a pair of 
3 1 1 3[ ( ) ( )] 2f x f xφ φ π−  (that is,

1 3 3 1
( ) ( )m x f m x f− ) and  

3 2 2 3[ ( ) ( )] 2f x f xφ φ π−  (that is, 
3 2 2 3
( ) ( )m x f m x f− ) is known, we can use the second, the third 

and the fourth column of Table 1 to determine the values of ( )
i

m x  (i=1,2,3).  

Table 1 Mapping from
0 ( )xΦ  to (

1( )m x ,
2 ( )m x ,

3( )m x ) and (
3 1 1 3[ ( ) ( )] 2f x f xφ φ π− , 

2 1 1 2[ ( ) ( )] 2f x f xφ φ π− ) 

0 ( )xΦ  
1
( )m x ,

2
( )m x ,

3
( )m x  

3 1 1 3
( ) ( )

2

f x f xφ φ
π
−

 2 1 1 2( ) ( )

2

f x f xφ φ
π
−

 

0
9 10 ( )xπ π≤ Φ <  3,5,7 -3 0 

0
13 15 ( ) 9 10xπ π≤ Φ <  3,4,7 -3 -6 

0
5 6 ( ) 13 15xπ π≤ Φ <  3,4,6 -9 -6 

0
11 15 ( ) 5 6xπ π≤ Φ <  2,4,6 6 4 

0
7 10 ( ) 11 15xπ π≤ Φ <  2,4,5 0 4 

0
9 15 ( ) 7 10xπ π≤ Φ <  2,3,5 0 -2 

0
2 ( ) 9 15xπ π≤ Φ <  2,3,4 -6 -2 

0
7 15 ( ) 2xπ π≤ Φ <  1,2,4 9 2 

0
5 15 ( ) 7 15xπ π≤ Φ <  1,2,3 3 2 

0
3 10 ( ) 5 15xπ π≤ Φ <  1,2,2 -3 2 

0
3 15 ( ) 3 10xπ π≤ Φ <  1,1,2 -3 -4 

0
6 ( ) 3 15xπ π≤ Φ <  1,1,1 -9 -4 



0
10 ( ) 6xπ π≤ Φ <  0,1,1 6 6 

0
15 ( ) 10xπ π≤ Φ <  0,0,1 6 0 

0
15 ( ) 15xπ π− < Φ <  0,0,0 0 0 

0
10 ( ) 15xπ π− < Φ ≤ −  0,0,-1 -6 0 

0
6 ( ) 10xπ π− < Φ ≤ −  0,-1,-1 -6 -6 

0
3 15 ( ) 6xπ π− < Φ ≤ −  -1,-1,-1 9 4 

0
3 10 ( ) 3 15xπ π− < Φ ≤ −  -1,-1,-2 3 4 

0
5 15 ( ) 3 10xπ π− < Φ ≤ −  -1,-2,-2 3 -2 

0
7 15 ( ) 5 15xπ π− < Φ ≤ −  -1,-2,-3 -3 -2 

0
2 ( ) 7 15xπ π− <Φ ≤ −  -1,-2,-4 -9 -2 

0
9 15 ( ) 2xπ π− < Φ ≤ −  -2,-3,-4 6 2 

0
7 10 ( ) 9 15xπ π− < Φ ≤ −  -2,-3,-5 0 2 

0
11 15 ( ) 7 10xπ π− < Φ ≤ −  -2,-4,-5 0 -4 

0
5 6 ( ) 11 15xπ π− < Φ ≤ −  -2,-4,-6 -6 -4 

0
13 15 ( ) 5 6xπ π− < Φ ≤ −  -3,-4,-6 9 6 

0
9 10 ( ) 13 15xπ π− < Φ ≤ −  -3,-4,-7 3 6 

0
( ) 9 10xπ π− < Φ ≤ −  -3,-5,-7 3 0 

 
With the above we can reconstruct the absolute phase maps of three fringe patterns by the 

following steps:  

1. Select three frequencies (
1f ,

2f ,
3f ) and construct a table similar to Table 1, making sure 

the table provides a unique mapping from a pair of 
3 1 1 3[ ( ) ( )] 2f x f xφ φ π−  (

1 3 3 1( ) ( )m x f m x f− ) 

and 
3 2 2 3[ ( ) ( )] 2f x f xφ φ π−  (

3 2 2 3( ) ( )m x f m x f− ) to ( )
i

m x  (i=1,2,3) ; 

2. Project onto the object with three fringe patterns of spatial frequencies (
1f ,

2f ,
3f ) 

respectively, acquiring three wrapped phase maps by a phase detection algorithm; 
3. Calculate the terms 

3 1 1 3[ ( ) ( )] 2f x f xφ φ π−  and 
3 2 2 3[ ( ) ( )] 2f x f xφ φ π− , round their values into 

the closest integers, denoted as M1 and M2. Look up the table constructed in Step 1, find 

the row (or entry) whose values of 
3 1 1 3[ ( ) ( )] 2f x f xφ φ π−  and 

3 2 2 3[ ( ) ( )] 2f x f xφ φ π−  are the 

closest to M1 and M2. Record the corresponding ( )im x  (i=1,2,3) in the same row; 

Reconstruct the absolute phase maps by Equation (2) using ( )im x  (i=1,2,3). 

2.2 Selection of the three spatial frequencies 

The validity of the approach proposed in 2.1 relies on the existence of unique mapping from a 
pair (

3 1 1 3[ ( ) ( )] 2f x f xφ φ π− , 
3 2 2 3[ ( ) ( )] 2f x f xφ φ π− ) to a combination (

1( )m x , 
2 ( )m x , 

3( )m x ). That 

is, 
1f ,

2f ,
3f  must be selected so that such a unique mapping relation is held.  

In order to achieve the above, let us look at the relationship between 
0 ( )xΦ  and 

1 2 3
( ( ), ( ), ( ))m x m x m x  first. From Equation (6), the range of 

0 ( )xΦ  can be divided into 

1 12 2 1N f= +    intervals, and the values of 
0 ( )xΦ  on the interval boundaries are 

1 1(2 1) /n fπ+  

where 1 1 12 2f n f− < <       . On each of these intervals 
1( )m x  takes a different value. Similarly, 

Equation (7) shows the range of 
0
( )xΦ  can be divided into 2 22 2 1N f= +    intervals, and the 



values of 
0
( )xΦ  on the interval boundaries are 

2 2(2 1) /n fπ+  where 2 2 22 2f n f− < <       .  On 

each of these intervals 
2 ( )m x  takes a different value.  Similarly, Equation (8) shows the range of 

0 ( )xΦ  can be divided into 3 32 2 1N f= +    intervals, and the values of 
0 ( )xΦ  on the interval 

boundaries are 
3 3(2 1) /n fπ+  where 3 3 32 2f n f− < <       , and on each of the intervals 

3( )m x  

takes a different value.  
When

1f , 
2f and 

3f  do not have the common factor other than 1, it is easy to show that 

boundaries of the three different intervals described above can divide the range of 
0 ( )xΦ  into 

several intervals, and each of the intervals must correspond to an unique combination of 

1 2 3( ( ), ( ), ( ))m x m x m x . As 
0 ( )xΦ  varies from π−  to π  monotonically, these intervals on 

0 ( )xΦ  

will correspond to the same number of intervals on x , denoted by 
1 2, ,..., NΩ Ω Ω . Obviously, 

each of 
1 2, ,..., NΩ Ω Ω  will also correspond to a unique combination 

1 2 3( ( ), ( ), ( ))m x m x m x . In 

summary of the above, we have the following: 

Statement 1: If 
1f , 

2f  and 
3f  do not have the common factor other than 1, the three phase 

maps can be divided into strips by the intervals [ ]1 2, ,..., Nx ⊂ Ω Ω Ω . Each of the strips on the 

phase maps corresponds to a unique combination 
1 2 3( ( ), ( ), ( ))m x m x m x , which can be used to 

recover the absolute phases. 

The above statement shows that when 
1f , 

2f are 
3f  do not have a common factor larger than 

1, there exists a unique solution for the phase unwrapping problem. In order to show that the 
proposed approach in 2.1 is sufficient, we should have the following: 

Statement 2: When 
1f , 

2f  , 
3f  do not have the common factor larger than 1, for any two 

different intervals a px ⊂ Ω , b qx ⊂Ω  and p q≠ , we must have two corresponding combinations 

of 
1 2 3( ( ), ( ), ( ))m x m x m x  based on Statement 1, which also meet the following: 

2 1 1 2 2 1 1 2( ) ( ) ( ) ( )

2 2

a a b bf x f x f x f xφ φ φ φ
π π
− −

≠ or/and 3 1 1 3 3 1 1 3( ) ( ) ( ) ( )

2 2

a a b bf x f x f x f xφ φ φ φ
π π
− −

≠    (9) 

The above are equivalent to the following:  

2 1 1 2 2 1 1 2( ) ( ) ( ) ( )a a b bm x f m x f m x f m x f− ≠ −  or/and 
3 1 1 3 3 1 1 3( ) ( ) ( ) ( )a a b bm x f m x f m x f m x f− ≠ −  

In other words, there exists a unique mapping from ( )1 2 3( ), ( ), ( )m x m x m x  to a pair of 

( 2 1 1 2( ) ( )

2

f x f xφ φ
π
−

, 3 1 1 3( ) ( )

2

f x f xφ φ
π
−

), or a unique mapping from ( )1 2 3( ), ( ), ( )m x m x m x  to a pair of 

(
2 1 1 2( ) ( )m x f m x f− ,

3 1 1 3( ) ( )m x f m x f− ).  

   Statement 2 is a mathematical statement which indicates that every combination of 

( )1 2 3( ), ( ), ( )m x m x m x  corresponds to a unique (
2 1 1 2( ) ( )m x f m x f− ,

3 1 1 3( ) ( )m x f m x f− ). However, it is 

difficult to give all the possible combinations of ( )1 2 3( ), ( ), ( )m x m x m x  to proof Statement 2. 

To validate the statement 2, we employ reductio ad absurdum. There are three possible 

scenarios making the two combinations of ( )1 2 3( ), ( ), ( )m x m x m x  different: (a) all of the three are 

different, that is 
1 1( ) ( )a bm x m x≠ , 

2 2( ) ( )a bm x m x≠  and 
3 3( ) ( )a bm x m x≠ , (b) two of the three are 

different (such as 
1 1( ) ( )a bm x m x= , 

2 2( ) ( )a bm x m x≠  and 
3 3( ) ( )a bm x m x≠ ), (c) one of the three is 

different (such as 
1 1( ) ( )a bm x m x= , 

2 2( ) ( )a bm x m x= and 
3 3( ) ( )a bm x m x≠ ). Without loss of 

generality let us discuss the first case where 
1 1( ) ( )a bm x m x≠ , 

2 2( ) ( )a bm x m x≠  and 
3 3( ) ( )a bm x m x≠ . 

Assume that the following is valid: 

2 1 1 2 2 1 1 2( ) ( ) ( ) ( )a a b bm x f m x f m x f m x f− = − , 
3 1 1 3 3 1 1 3( ) ( ) ( ) ( )a a b bm x f m x f m x f m x f− = −    (10) 

Equation (11) can be rewritten as:  



1 1 2 2 3 3

1 2 3

( ) ( ) ( ) ( ) ( ) ( )a b a b a bm x m x m x m x m x m x

f f f

− − −
= =                               (11) 

As 
1f ,

2f ,
3f  do not have the common factor larger than 1, Equation (12) must be equivalent to 

the following:  

1 1 1( ) ( )a bm x m x kf− = , 
2 2 2( ) ( )a bm x m x kf− = , 

3 3 3( ) ( )a bm x m x kf− =                    (12) 

where k  is an integer and 0k ≠ .  

Considering the ranges of 
1( )m x , 

2 ( )m x , 
3( )m x  given above, we have: 

1 1
1 1

2 ( ) ( ) 2
2 2

a b

f f
m x m x

   − ≤ − ≤      
, 2 2

2 2
2 ( ) ( ) 2

2 2
a b

f f
m x m x

   − ≤ − ≤      
, 

3 3
3 3

2 ( ) ( ) 2
2 2

a b

f f
m x m x

   − ≤ − ≤      
                                          (13) 

Comparing Equation (12) with Equation (13), it is obvious that 1k = ± . Hence we have 

1 1 1( ) ( )a bm x m x f− = ± , 
2 2 2( ) ( )a bm x m x f− = ± , 

3 3 3( ) ( )a bm x m x f− = ±                         (14) 

    Looking at Equation (13) again, when Equation (14) is held, we must have:  

1 1

2 2

f f  =  
, 2 2

2 2

f f  =  
, 3 3

2 2

f f  =  
                                          (15) 

Equation (15) implies that 
1f ,

2f and
3f  are all even numbers, which is contradict to the fact that 

1f ,
2f and

3f  do not have the common factor larger than 1. Hence Equation (10) will not be true 

for the case (a) 
1 1( ) ( )a bm x m x≠ , 

2 2( ) ( )a bm x m x≠  and 
3 3( ) ( )a bm x m x≠ , thus we have the following:  

2 1 1 2 2 1 1 2( ) ( ) ( ) ( )a a b bm x f m x f m x f m x f− ≠ −  or/and 
3 1 1 3 3 1 1 3( ) ( ) ( ) ( )a a b bm x f m x f m x f m x f− ≠ −      (16) 

Similarly, we can also show that Statement 2 is true for the cases (b) and (c). Combining 
Statement 1 and 2, we are able to propose the following for selection of the three spatial 
frequencies for the technique proposed in 2.1. 

Statement 3: If 
1f ,

2f and
3f  do not have the common factor larger than 1, there existing a 

unique mapping from (
2 1 1 2[ ( ) ( )] 2f x f xφ φ π− ,

3 1 1 3[ ( ) ( )] 2f x f xφ φ π− ) to (
1( )m x ,

2 ( )m x ,
3( )m x ), 

which enable us to determine (
1( )m x ,

2 ( )m x ,
3( )m x ). 

Statement 3 presents a rule for the selection of the three frequencies.  In contrast to the two-
frequency method proposed in [13], where the two frequencies must be co-prime to each other, 
Statement 3 does not require that all the three frequencies are co-prime to each other, hence 
allows more flexibility in the selection of their values.  As seen below in Section 3, this will 
provide advantages in terms of the anti-error capability. 

3. The phase error tolerance bound 

In this section we will study the performance of the proposed technique in terms of its anti-error 

capability.  The anti-error capability of the proposed technique depends on the gaps between 

any two possible values of 
3 1 1 3[ ( ) ( )] 2f x f xφ φ π−  and 

2 1 1 2[ ( ) ( )] 2f x f xφ φ π− . The larger the gap, 

the more unlikely the error will occur due to the rounding operation.  Hence we need to find out 

the smallest gaps, and we should also work out the relationship between the phase error in 

(
1( )xφ ,

2( )xφ ) and the smallest gap.  In the example shown in Table 1, the smallest value gaps for 

the entries in columns three (
2 1 1 2[ ( ) ( )] 2f x f xφ φ π− , 

1 6f = , 
3 15f = ) and column four 

(
2 1 1 2[ ( ) ( )] 2f x f xφ φ π− , 

1 6f =  , 
2 10f = ) are 3 and 2 respectively.  In contrast to the two-

frequency approach presented in [13] where the minimal gap is 1, the proposed method is 

obviously better in terms of its anti-error capabilities.  

In order to work out the smallest gap mentioned above, let us have a look of the example in 

Table 1  again.   It is observed that the minimal gap between the entries of 
3 1 1 3[ ( ) ( )] 2f x f xφ φ π−  

is 3, which is the common factor of the two frequencies 6 and 15; the minimal gap between the 

entries of 
2 1 1 2[ ( ) ( )] 2f x f xφ φ π−  is 2, also the common factor of the two frequencies 6 and 10. 



This implies that the minimal gap might equal the common factor of the two frequencies.  In 

order to prove such a hypothesis, let us consider two fringe patterns with frequencies 
1f  and 

2f . 

When 
1f  and 

2f  have a common factor  t (t>1), the 
1f t− -th (and also 

1
f t -th) boundaries for 

0 ( )xΦ  defined by Equations (6) are tπ−  and tπ , will coincide to the 
2

f t− -th (and also 

2
f t -th) boundaries defined by Equation (7), respectively.  This relationship also holds for all 

the integer multiples of 
1f t and 

2
f t .  Considering the range ( )0 ( ) / , /x t tπ πΦ ⊂ − , from 

Equations (6) and (7) we have 

1 1 1
0

1

0

1 1

01

1 1

0

1 1

1 1 1
0

1

1
[ ( mod 2 1)] ( )

2

... ...

3
1 ( )

0 ( )( )

3
1 ( )

... ...

1
( ) [ ( mod 2 1)]

2

f f f
x

t t t f t

x
f f

xm x
f f

x
f f

f f f
x

t t t t f

π
π

π π

π π

π π

π
π

   − + ⋅ ≤ Φ <   


 ≤ Φ <

 − < Φ <= 



− − < Φ ≤ −



  − − < Φ ≤ − − + ⋅   

                                (17) 

                   

2 2 2
0

2

0

2 2

02

2 2

0

2 2

2 2 2
0

2

1
[ ( mod 2 1)] ( )

2

... ...

3
1 ( )

0 ( )( )

3
1 ( )

... ...

1
( ) [ ( mod 2 1)]

2

f f f
x

t t t f t

x
f f

xm x
f f

x
f f

f f f
x

t t t t f

π
π

π π

π π

π π

π
π

  
− + ⋅ ≤ Φ <   



 ≤ Φ <

 − < Φ <= 



− − < Φ ≤ −



  − − < Φ ≤ − − + ⋅   

                               (18)  

Now we look at the values of 
2 1 1 2( ) ( )m x f m x f−  over the range of ( )0 ( ) / , /x t tπ πΦ ⊂ − .  As the 

two frequencies have a common factor t, we have 

 1 2
2 1 1 2 2 1( ) ( ) [ ( ) ( ) ]

f f
m x f m x f t m x m x

t t
− = −                                         (19) 

Giving t the largest common factor of the two frequencies, 
1f t  and 

2f t  will be coprime to 

each other.  Also for ( )0 ( ) / , /x t tπ πΦ ⊂ − , 
1
( )m x and 

2
( )m x are given by Equations (17) and 

(18), falling into the range 1 1( 2 , 2 )f t f t−         and 2 2( 2 , 2 )f t f t−        respectively. Hence the 

term 
2 1 1 2[ ( ) ( ) ]m x f t m x f t−  is exactly the same for the same of two frequencies 

1f t and 
2f t  

which are co-prime to each other.  From the analysis in [13] we know that the minimal gap 
between the vales of 

2 1 1 2[ ( ) ( ) ]m x f t m x f t−  is 1. Obviously, the minimal gap between the vales 

2 1 1 2[ ( ) ( ) ]m x f t m x f t−  is t.   



Now we consider the value of 
2 1 1 2( ) ( )m x f m x f−  beyond the range ( )0 ( ) / , /x t tπ πΦ ⊂ − .  

Without loss of generality, let us consider the range
0 ( ) [ / ,3 / )x t tπ πΦ ⊂ . Given the values of  

1
( )m x and 

2
( )m x  over the range ( )0 ( ) / , /x t tπ πΦ ⊂ − , we have the following: 

[ ] [ ]
0 0

1
1 1( ) [ / ,3 / ) ( ) [ / , / )
( ) ( )

x t t x t t

f
m x m x

tπ π π πΦ ⊂ Φ ⊂ −
= + , [ ] [ ]

0 0

2
2 2( ) [ / ,3 / ) ( ) [ / , / )
( ) ( )

x t t x t t

f
m x m x

tπ π π πΦ ⊂ Φ ⊂ −
= +  

                    (20) 
Hence we have 

[ ]

[ ]

0

0

0

1 2 1 2
1 2 2 1 2 1( ) [ / ,3 / )

( ) [ / , / )

1 2 2 1 ( ) [ / , / )

( ) ( ) ( ) ( )

( ) ( )

x t t
x t t

x t t

f f f f
f m x f m x m x m x

t t

f m x f m x

π π
π π

π π

Φ ⊂
Φ ⊂ −

Φ ⊂ −

 − = + − −  

= −

        (21) 

Therefore values of  
2 1 1 2( ) ( )m x f m x f−  on 

0 ( ) [ / ,3 / )x t tπ πΦ ⊂  is the periodic extension of its 

value on ( )0 ( ) / , /x t tπ πΦ ⊂ − . In the same way we can show that 
2 1 1 2( ) ( )m x f m x f−  exhibits the 

same values over all the periodic extension of ( )0 ( ) / , /x t tπ πΦ ⊂ − .  Hence we have the 

following:   
   Statement 4: The minimal value gap of the elements in 

2 1 1 2( ) ( )m x f m x f−  equals to the largest 

common factor of the two frequencies 
1f  and 

2f  . 

   Based on Statement 3 and Statement 4, we have the method to increase the minimal value gap 
for three frequency technique.  That is, the three frequencies must not have a common factor 
larger than 1, but the two frequency pairs should be selected in the way to have a common 
factor as large as possible.  For example, for three frequencies (10, 12, 15), we can formulate 
(10, 15) and (12, 15) two combinations. For three frequencies (8, 12, 15), we can formulate (8, 
12) and (12, 15) two combinations.  
   The phase error bound can be obtained when the minimal value gap is t. Let 

max 1 2max( ( ) , ( ) )x xφ φ φ∆ = ∆ ∆ , where 
1( )xφ∆  is the phase error of the wrapped phase map 

1( )xφ , 

2 ( )xφ∆  is the phase error of the wrapped phase map 
2( )xφ . From Statement 4 and using the 

similar analysis presented in [13], the phase error bound for two frequencies with the largest 
common factor t  (t>1) can be obtained as follows: 

max

1 2

0
t

f f

π
φ≤ ∆ <

+
                                                         (22) 

The above gives the upper bound of 
maxφ∆  with which the absolute phase maps can be correctly 

recovered. In other words, if 
maxφ∆  is given, we should select the two frequencies to meeting the 

following:  

1 2

max

t
f f

π
φ

+ <
∆

                                              (23) 

Compared with [13], the reliability of absolute phase maps can be significantly improved in 
terms of the phase error tolerance.  
     

4. Experiments 

In order to verify the performance of the proposed technique, we implemented two experiments. 
The aim of first experiment is to show that the proposed three-frequency method could recover 
the absolute phase of test object correctly.  The aim of second experiment is to show the 
proposed three-frequency method could improve the reliability of the absolute phase recovered 
by two-frequency method.  The camera in the experiments is DuncanTech MS3100 high 
resolution 3CCD camera, the projector is Hitachi CP-X260 Multimedia LCD Projector. The test 
object is a plaster hand, which is characterized by complex surface such as sharp changes and 



discontinuities around fingers. Similar surfaces can be found in many engineering applications, 
thus it is used to demonstrate the effectiveness of proposed method. The length (along the finger 
direction) of the test object is 250mm, the width is 160mm, and the maximal height is 80mm. 

In the first experiment, we project three fringe patterns at spatial frequencies 
1 10f = , 

2 12f = , 

3 15f =  onto the same plaster hand model. The two combinations for phase unwrapping are 

(10,15) and (12,15), the minimal value gap of 3 1 1 3
( ) ( )

2

f x f xφ φ
π
−

(10,15) is 5, the minimal value 

gap of 3 2 2 3
( ) ( )

2

f x f xφ φ
π
−

(12,15) is 3.  The wrapped phase maps are obtained by six-step PSP 

(Phase Shifting Profilometry).  The deformed fringe patterns are shown in Fig. 1 (a) - (c), the 
vertical (y-direction) resolution of pattern image is 1392, the horizontal (x-direction) is 1038.  
The capture field of camera is 464mm (y-direction) ×  346mm (x-direction), so the periods of 

spatial frequencies
1 10f = , 

2 12f = , 
3 15f =  are 346mm/10=34.6mm, 346mm/12=28.83mm, 

346mm/15=23.09mm. These periods are achieved by controlling the projector pitches in our 
experiments.  

            
                                (a)                                                       (b)                                                      (c) 

             

                                (d)                                                       (e)                                                       (f) 



             

(g)                                                       (h)                                                       (i) 

Fig. 1 Experiment results when 
1 10f = , 

2 12f = , 
3 15f = . (a)-(c) are the deformed fringe pattern on 

1 10f = , 
2 12f = , 

3 15f =  respectively; (d)-(f) are the wrapped phase maps on each frequency obtained by six-step PSP; (g)-(i) are the 

recovered absolute phase maps on each frequencies by (d)-(f). 

To obtain the maximum absolute value of phase error in wrapped phase map, we compare the 
wrapped phase calculated by captured fringe images on reference plane (six-step phase shifting 
algorithm) with the ideal wrapped phase at 

1 10f =  generated by computer. The maximum 

absolute value of phase error in the wrapped phase in our system is 0.1387, the phase error is 
mainly resulted from the nonlinearity of the system. When the number of phase shifting is 
determined, the phase error is a periodic function of its corresponding actual phase [17, 18], so 
we can use this value to estimate the phase error for the fringes at different frequencies. 
Comparing with the phase error bound given by Eq. (22), we know that the maximum absolute 
value of phase error is smaller than the phase error bound, 0.1387 5 (10 15) 5π π< + =  and 

0.1387 3 (12 15) 9π π< + = . In this case, the absolute phase maps should be recovered correctly 

and the results in Figure 1 (g)-(i) has shown the same.  Figure 2 (a) are the sections 800y =  

(pixel) on the absolute phase maps of three digital frequencies. Those absolute phases on section 
y=800 (pixel) are sampled from the absolute phase maps in Figure 1 (g)-(i), we mark the section 
y=800 of 

1 10f =  by a solid black line in Figure 2 (b), the position of the section is the same for 

other frequencies. The amplitudes of recovered absolute phases at different frequencies are 
consistent with the analytical conclusions given in [13]. 

 
(a) 



 
 (b) 

Fig. 2 Absolute phases on the section 800y =  (pixel) of three spatial frequencies (a) and position of section y=800 (b)  

The second experiment aims to validate the increase of the value gap by the proposed 
frequency selection method in Section 3. The experiment firstly reconstructs the three-
dimensional surface of an object (a hand) using the proposed three frequency technique where 

the three frequencies are selected as 
1 8f = , 

2 12f = , 
3 15f = , the two combinations for phase 

unwrapping are (8,12) and (12,15), the minimal value gap of 
2 1 1 2[ ( ) ( )] 2f x f xφ φ π−  (8,12) is 4, 

the minimal value gap of 
3 2 2 3[ ( ) ( )] 2f x f xφ φ π−  (12,15) is 3. The periods of different frequency 

fringes are also achieved by controlling the projector pitches. 
The result of the 3D reconstruction is shown in Figure 3.  Then we reconstruct the same 

object using the two frequency technique [12 ,13] where the two frequencies are 8 and 15, and 
the result is shown in Figure 4.  The wrapped phase maps are all obtained by six-step PSP.  The 
errors in Figure 4 do not belong to the invalid regions, the absolute phase in invalid regions are 
labeled as infinite (appeared as white region) in Figure 4. 
  

 

Fig. 3  Three-dimensional cloud reconstructed by three frequency technique at 15f =  



 

Fig. 4 Three-dimensional cloud reconstructed by two frequency technique at 15f =  

Similar to experiment 1, the maximum absolute value of the phase error in wrapped phase 
maps is 0.1387, which is still smaller than the phase error bound 4 (8 12) 5π π+ =  and 

3 (12 15) 9π π+ =  given by Equation (22).  Hence the proposed method is able to recover the 

absolute phase, thus yielding correct 3D shape reconstruction as shown in Figure 3.  However, 
for the two frequency method in [12, 13], although the  maximum absolute value of the phase 
error in wrapped phase maps is still 0.1387, this value is larger than the phase error bound 

0.1387 (8 15) 23π π> + =  given in [13].  Hence mistakes are resulted for determining the fringe 

indices and errors can be observed in Figure 4 for the 3D reconstruction of the object. To 
evaluate the performance of three frequency technique and two frequency technique, we count 
the number of pixels with wrong fringe order recovered by those two techniques. In this 
experiment, the number of pixels with wrong fringe order in the absolute phase map recovered 

by two frequency technique at 15f =  is 227, in contrast, there is no pixel with wrong fringe 

order in the absolute phase map recovered by three frequency technique at 15f = . To compare 

the results in detail, we use the section y=565 to show the difference of the absolute phases 
recovered by those two techniques. 

 
Fig. 5 Absolute phase recovered by two frequency technique and three frequency technique on section y=565 at 15f =  

From Figure 5, we can see that the absolute phase recovered by two frequency technique 
overlaps with the absolute phase recovered by three frequency technique except few significant 



errors, the errors are resulted from the wrong fringe orders [13]. These results show that the 
proposed method is better than the two-frequency one [12, 13] in terms of its anti-phase error 
capability.  

5. Conclusion 
   This paper proposes a temporal phase unwrapping technique based on projection of three 
fringe patterns with different frequencies.  A general rule is also presented for selecting the three 
frequencies with the aim to increase anti-phase error capability. It is shown by theoretical 
analysis and experiments that, under the same level of phase error, the proposed three frequency 
technique can provide a more reliable phase unwrapping result than the two frequency 
technique in [12, 13]. The proposed three frequency technique can be employed to acquire the 
three dimensional data accurately for the objects characterized by complex surface.  
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