210 research outputs found

    A Study of the Relationship between Childhood Body Size and Adult Blood Pressure, Cardiovascular Structure and Function

    Get PDF
    BACKGROUND: Little is known of the effects of obesity, body size and body composition, and blood pressure (BP) in childhood on hypertension (HBP) and cardiac structure and function in adulthood due to the lack of long-term serial data on these parameters from childhood into adulthood. In the present study, we are poised to analyze these serial data from the Fels Longitudinal Study (FLS) to evaluate the extent to which body size during childhood determines HBP and cardiac structure and function in the same individuals in adulthood through mathematical modeling. METHODS: The data were from 412 males and 403 females in the FLS. Stature and BMI parameters were estimated using the Preeze-Baines model and the third degree polynomial model to describe the timing, velocity and duration of these measure from 2 to 25 years of age. The biological parameters were related to adult BP and echocardiographic (Echo-) measurements using Generalized Linear Models (GLM). RESULTS: The parameters of stature and BMI were compared between male and female to their overall goodness of fit and their capabilities to quantify the timing, rate of increase, and duration of the growth events. For stature parameters, the age at onset and peak velocity was earlier for girls; but the peak velocity was greater in boys; the velocity at onset was about the same for boys and girls; and stature at onset, peak velocity and adult was greater for boys. For BMI parameters, boys tended to have larger BMI values than girls, but the rates of change in BMI were almost the same; there was no sex difference in the timing of BMI rebound, but there was for the age of the peak velocity of BMI and maximum BMI, both of which were earlier in girls than in boys. CONCLUSIONS: Changes in childhood stature and BMI parameters were related to adult BP and Echo-measurements more so in females than males. Also the relationship of the adult BP measurements with corresponding childhood biological parameters was stronger than the relationship for adult Echo-measurements

    Multi-morbidities are Not a Driving Factor for an Increase of COPD-Related 30-Day Readmission Risk

    Get PDF
    Background and Objective: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the United States. COPD is expensive to treat, whereas the quality of care is difficult to evaluate due to the high prevalence of multi-morbidity among COPD patients. In the US, the Hospital Readmissions Reduction Program (HRRP) was initiated by the Centers for Medicare and Medicaid Services to penalize hospitals for excessive 30-day readmission rates for six diseases, including COPD. This study examines the difference in 30-day readmission risk between COPD patients with and without comorbidities.Methods: In this retrospective cohort study, we used Cox regression to estimate the hazard ratio of 30-day readmission rates for COPD patients who had no comorbidity and those who had one, two or three, or four or more comorbidities. We controlled for individual, hospital and geographic factors. Data came from three sources: Healthcare Cost and Utilization Project (HCUP) State Inpatient Databases (SID), Area Health Resources Files (AHRF) and the American Hospital Association’s (AHA’s) annual survey database for the year of 2013.Results: COPD patients with comorbidities were less likely to be readmitted within 30 days relative to patients without comorbidities (aHR from 0.84 to 0.87, p \u3c 0.05). In a stratified analysis, female patients with one comorbidity had a lower risk of 30-day readmission compared to female patients without comorbidity (aHR = 0.80, p \u3c 0.05). Patients with public insurance who had comorbidities were less likely to be readmitted within 30 days in comparison with those who had no comorbidity (aHR from 0.79 to 0.84, p \u3c 0.05).Conclusion: COPD patients with comorbidities had a lower risk of 30-day readmission compared with patients without comorbidity. Future research could use a different study design to identify the effectiveness of the HRRP

    Parents Shape their Children’s Physical Activity During Unstructured Recess Through Intrinsic Value the Children Possess

    Get PDF
    Parents beliefs processes has shown to relate to their children’s decisions making. Thus, grounded in the expectancy-value theory, the aim of this study was to examine parents’ role in shaping elementary school students’ beliefs and task values toward students’ school-time physical activity (PA) and their moderate-to-vigorous (MVPA) behavior during unstructured recess. A convenience sample of 115 (Mage = 10.12±1.81) children and their parents/guardians were recruited, and their expectancy-beliefs and attainment, utility, and interest values toward school-time PA were assessed. In addition, children’s MVPA during recess was measured using waist-attached accelerometers. Results showed that parents impacted children’s recess PA in different ways depending on children’s gender. In girls, parents’ beliefs and values transferred directly to the subsequent values of their children, whereas parents’ beliefs were the central predictors of boys’ beliefs and values. Parents’ intrinsic value moderated girls’ MVPA via the intrinsic value of the participants possessed (Z = 1.73, p = .010, 90% CI [.36, 2.93]), whereas parents’ beliefs moderated boys’ intrinsic value – MVPA relationship (Z = .78, p < .001, 90% CI [.39, 1.10]). This study suggests applying gender-specific strategies when trying to understand how beliefs and task values impact PA-related behaviors

    Insights into distinct regulatory modes of nucleosome positioning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nucleosome is the fundamental unit of eukaryotic genomes. Experimental evidence suggests that the genomic DNA sequence and a variety of protein factors contribute to nucleosome positioning <it>in vivo</it>. However, how nucleosome positioning is determined locally is still largely unknown.</p> <p>Results</p> <p>We found that transcription factor binding sites (TFBSs) with particular nucleosomal contexts show a preference to reside on specific chromosomes. We identified four typical gene classes associated with distinct regulatory modes of nucleosome positioning, and further showed that they are distinguished by transcriptional regulation patterns. The first mode involves the cooperativity between chromatin remodeling and stable transcription factor (TF)-DNA binding that is linked to high intrinsic DNA binding affinities, evicting nucleosomes from favorable DNA sequences. The second is the DNA-encoded low nucleosome occupancy that is associated with high gene activity. The third is through chromatin remodeling and histone acetylation, sliding nucleosomes along DNA. This mode is linked to more cryptic sites for TF binding. The last consists of the nucleosome-enriched organization driven by other factors that overrides nucleosome sequence preferences. In addition, we showed that high polymerase II (Pol II) occupancy is associated with high nucleosome occupancy around the transcription start site (TSS).</p> <p>Conclusions</p> <p>We identified four different regulatory modes of nucleosome positioning and gave insights into mechanisms that specify promoter nucleosome location. We suggest two distinct modes of recruitment of Pol II, which are selectively employed by different genes.</p

    The relationship between physical education and leisure-time physical activity behavior

    Get PDF
    Due to limitations in instruction hours and resources, it has become increasingly difficult for physical education to simultaneously provide knowledge, skills and sufficient physical activity needed for healthful living. Consequently, leisure-time physical activity participation becomes a significant opportunity to supplement physical education for students to be physically active. Ennis (2010) pointed out that health-related fitness knowledge, motor skills and physical activity demonstrated in physical education have become critical in developing students’ healthful living behavior. Guided by the transfer theory, the purpose of this study was to describe the extent to which college students’ knowledge and skills demonstrated in physical education are associated with leisure-time physical activity behavior. A total of 186 student participants (99 males, 87 females) in basketball, volleyball, and soccer classes at one of the University of North Carolina completed fitness knowledge tests, in-class physical activity measures, sports skills tests, and a leisure-time physical activity recall survey. Pearson correlation, multiple regression analysis, and canonical correlation analyses were used to examine association at variable-to-variable (bivariate) and variable set-to-set levels. The major findings include (a) There was no relationship between health-related fitness knowledge and leisure-time physical activity behavior at the variable to variable level. (b) In-class physical activity and sport skills demonstrated in physical education had a weak correlation with leisure-time physical activity behavior. (c) There was a variable set-to-set correlation between skill and leisure time sport-specific physical activity participation in soccer. These findings support the assumption of transfer theory that behavior transfer is unlikely to rely on the variable to variable associations. It is more likely to take place in a holistic way, where individual factors in one environment (e.g., physical education) work together as a set to interact with a set of factors in a different environment (e.g., leisure-time physical activity settings). The findings imply a holistic approach to be used in further research to examine the relationship between physical education and leisure-time physical activity

    Research progress of electrochemical oxidation and self-action of electric field for medical wastewater treatment

    Get PDF
    A large number of pathogenic microorganisms exist in medical wastewater, which could invade the human body through the water and cause harm to human health. With the global pandemic coronavirus (COVID-19), public health safety become particularly important, and medical wastewater treatment is an important part of it. In particular, electrochemical disinfection technology has been widely studied in medical wastewater treatment due to its greenness, high efficiency, convenient operation, and other advantages. In this paper, the development status of electrochemical disinfection technology in the treatment of medical wastewater is reviewed, and an electrochemical three-stage disinfection system is proposed for the treatment of medical wastewater. Moreover, prospects for the electrochemical treatment of medical wastewater will be presented. It is hoped that this review could provide insight and guidance for the research and application of electrochemical disinfection technology to treat medical wastewater.GRAPHICAL ABSTRAC

    Genome-wide analysis of interactions between ATP-dependent chromatin remodeling and histone modifications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>ATP-dependent chromatin remodeling and the covalent modification of histones play central roles in determining chromatin structure and function. Although several specific interactions between these two activities have been elaborated, the global landscape remains to be elucidated.</p> <p>Results</p> <p>In this paper, we have developed a computational method to generate the first genome-wide landscape of interactions between ATP-dependent chromatin remodeling and the covalent modification of histones in <it>Saccharomyces cerevisiae</it>. Our method succeeds in identifying known interactions and uncovers many previously unknown interactions between these two activities. Analysis of the genome-wide picture revealed that transcription-related modifications tend to interact with more chromatin remodelers. Our results also demonstrate that most chromatin remodeling-modification interactions act via interactions of remodelers with both histone-modifying enzymes and histone residues. We also found that the co-occurrence of both modification and remodeling has significantly different influences on multiple gene features (e.g. nucleosome occupancy) compared with the presence of either one.</p> <p>Conclusion</p> <p>We gave the first genome-wide picture of ATP-dependent chromatin remodeling-histone modification interactions. We also revealed how these two activities work together to regulate chromatin structure and function. Our results suggest that distinct strategies for regulating chromatin activity are selectively employed by genes with different properties.</p

    Genome-wide analysis of the effect of histone modifications on the coexpression of neighboring genes in Saccharomyces cerevisiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neighboring gene pairs in the genome of <it>Saccharomyces cerevisiae </it>have a tendency to be expressed at the same time. The distribution of histone modifications along chromatin fibers is suggested to be an important mechanism responsible for such coexpression. However, the extent of the contribution of histone modifications to the coexpression of neighboring genes is unclear.</p> <p>Results</p> <p>We investigated the similarity of histone modification between neighboring genes using autocorrelation analysis and composite profiles. Our analysis showed that neighboring genes had similar levels or changes of histone modifications, especially those transcribed in the same direction. The similarities, however, were restricted to 1 or 2 neighboring genes. Moreover, the expression of a gene was significantly correlated with histone modification of its neighboring gene(s), but this was limited to only 1 or 2 neighbors. Using a hidden Markov model (HMM), we found more than 2000 chromatin domains with similar acetylation changes as the cultures changed and a considerable number of these domains covered 2-4 genes. Gene pairs within domains exhibited a higher level of coexpression than random pairs and shared similar functions.</p> <p>Conclusions</p> <p>The results of this study suggest that similar histone modifications occur within only a small local chromatin region in yeast. The modifications generally have an effect on coexpression with only 1 or 2 neighboring genes. Some blocking mechanism(s) might strictly restrain the distribution of histone modifications in yeast.</p

    Two distinct modes of nucleosome modulation associated with different degrees of dependence of nucleosome positioning on the underlying DNA sequence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nucleosome is the fundamental unit of eukaryotic genomes. Its positioning plays a central role in diverse cellular processes that rely on access to genomic DNA. Experimental evidence suggests that the genomic DNA sequence is one important determinant of nucleosome positioning. Yet it is less clear whether the role of the underlying DNA sequence in nucleosome positioning varies across different promoters. Whether different determinants of nucleosome positioning have characteristic influences on nucleosome modulation also remains to be elucidated.</p> <p>Results</p> <p>We identified two typical promoter classes in yeast associated with high or low dependence of nucleosome positioning on the underlying DNA sequence, respectively. Importantly, the two classes have low or high intrinsic sequence preferences for nucleosomes, respectively. The two classes are further distinguished by multiple promoter features, including nucleosome occupancy, nucleosome fuzziness, H2A.Z occupancy, changes in nucleosome positions before and after transcriptional perturbation, and gene activity. Both classes have significantly high turnover rates of histone H3, but employ distinct modes of nucleosome modulation: The first class is characterized by hyperacetylation, whereas the second class is highly regulated by ATP-dependent chromatin remodelling.</p> <p>Conclusion</p> <p>Our results, coupled with the known features of nucleosome modulation, suggest that the two distinct modes of nucleosome modulation selectively employed by different genes are linked with the intrinsic sequence preferences for nucleosomes. The difference in modes of nucleosome modulation can account for the difference in the contribution of DNA sequence to nucleosome positioning between both promoter classes.</p

    The Emerging Epigenetic Role of CD8+T Cells in Autoimmune Diseases: A Systematic Review

    Get PDF
    Autoimmune diseases are usually complex and multifactorial, characterized by aberrant production of autoreactive immune cells and/or autoantibodies against healthy cells and tissues. However, the pathogenesis of autoimmune diseases has not been clearly elucidated. The activation, differentiation, and development of CD8+ T cells can be affected by numerous inflammatory cytokines, transcription factors, and chemokines. In recent years, epigenetic modifications have been shown to play an important role in the fate of CD8+ T cells. The discovery of these modifications that contribute to the activation or suppression of CD8+ cells has been concurrent with the increasing evidence that CD8+ T cells play a role in autoimmunity. These relationships have been studied in various autoimmune diseases, including multiple sclerosis (MS), systemic sclerosis (SSc), type 1 diabetes (T1D), Grave's disease (GD), systemic lupus erythematosus (SLE), aplastic anemia (AA), and vitiligo. In each of these diseases, genes that play a role in the proliferation or activation of CD8+ T cells have been found to be affected by epigenetic modifications. Various cytokines, transcription factors, and other regulatory molecules have been found to be differentially methylated in CD8+ T cells in autoimmune diseases. These genes are involved in T cell regulation, including interferons, interleukin (IL),tumor necrosis factor (TNF), as well as linker for activation of T cells (LAT), cytotoxic T-lymphocyte–associated antigen 4 (CTLA4), and adapter proteins. MiRNAs also play a role in the pathogenesis of these diseases and several known miRNAs that are involved in these diseases have also been shown to play a role in CD8+ regulation
    • …
    corecore