27 research outputs found

    Proteomic Evaluation of Neonatal Exposure to 2,2′,4,4′,5-Pentabromodiphenyl Ether

    Get PDF
    Exposure to the brominated flame retardant 2,2′,4,4′,5-pentabromodiphenyl ether (PBDE-99) during the brain growth spurt disrupts normal brain development in mice and results in disturbed spontaneous behavior in adulthood. The neurodevelopmental toxicity of PBDE-99 has been reported to affect the cholinergic and catecholaminergic systems. In this study we use a proteomics approach to study the early effect of PBDE-99 in two distinct regions of the neonatal mouse brain, the striatum and the hippocampus. A single oral dose of PBDE-99 (12 mg/kg body weight) or vehicle was administered to male NMRI mice on neonatal day 10, and the striatum and the hippocampus were isolated. Using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), we found 40 and 56 protein spots with significantly (p < 0.01) altered levels in the striatum and the hippocampus, respectively. We used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI–ToF–MS) to determine the protein identity of 11 spots from the striatum and 10 from the hippocampus. We found that the levels of proteins involved in neurodegeneration and neuroplasticity (e.g., Gap-43/neuromodulin, stathmin) were typically altered in the striatum, and proteins involved in metabolism and energy production [e.g., α-enolase; γ-enolase; ATP synthase, H(+) transporting, mitochondrial F(1) complex, β subunit (Atp5b); and α-synuclein] were typically altered in the hippocampus. Interestingly, many of the identified proteins have been linked to protein kinase C signaling. In conclusion, we identify responses to early exposure to PBDE-99 that could contribute to persistent neurotoxic effects. This study also shows the usefulness of proteomics to identify potential biomarkers of developmental neurotoxicity of organohalogen compounds

    Neuropeptidomic analysis of the embryonic Japanese quail diencephalon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endogenous peptides such as neuropeptides are involved in numerous biological processes in the fully developed brain but very little is known about their role in brain development. Japanese quail is a commonly used bird model for studying sexual dimorphic brain development, especially adult male copulatory behavior in relation to manipulations of the embryonic endocrine system. This study uses a label-free liquid chromatography mass spectrometry approach to analyze the influence of age (embryonic days 12 vs 17), sex and embryonic day 3 ethinylestradiol exposure on the expression of multiple endogenous peptides in the developing diencephalon.</p> <p>Results</p> <p>We identified a total of 65 peptides whereof 38 were sufficiently present in all groups for statistical analysis. Age was the most defining variable in the data and sex had the least impact. Most identified peptides were more highly expressed in embryonic day 17. The top candidates for EE<sub>2 </sub>exposure and sex effects were neuropeptide K (downregulated by EE<sub>2 </sub>in males and females), gastrin-releasing peptide (more highly expressed in control and EE<sub>2 </sub>exposed males) and gonadotropin-inhibiting hormone related protein 2 (more highly expressed in control males and displaying interaction effects between age and sex). We also report a new potential secretogranin-2 derived neuropeptide and previously unknown phosphorylations in the C-terminal flanking protachykinin 1 neuropeptide.</p> <p>Conclusions</p> <p>This study is the first larger study on endogenous peptides in the developing brain and implies a previously unknown role for a number of neuropeptides in middle to late avian embryogenesis. It demonstrates the power of label-free liquid chromatography mass spectrometry to analyze the expression of multiple endogenous peptides and the potential to detect new putative peptide candidates in a developmental model.</p

    Head to head comparisons of two modalities of perfusion adenosine stress echocardiography with simultaneous SPECT

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Real-time perfusion (RTP) contrast echocardiography can be used during adenosine stress echocardiography (ASE) to evaluate myocardial ischemia. We compared two different types of RTP power modulation techniques, angiomode (AM) and high-resolution grayscale (HR), with <sup>99m</sup>Tc-tetrofosmin single-photon emission computed tomography (SPECT) for the detection of myocardial ischemia.</p> <p>Methods</p> <p>Patients with known or suspected coronary artery disease (CAD), admitted to SPECT, were prospectively invited to participate. Patients underwent RTP imaging (SONOS 5500) using AM and HR during Sonovue<sup>® </sup>infusion, before and throughout the adenosine stress, also used for SPECT. Analysis of myocardial perfusion and wall motion by RTP-ASE were done for AM and HR at different time points, blinded to one another and to SPECT. Each segment was attributed to one of the three main coronary vessel areas of interest.</p> <p>Results</p> <p>In 50 patients, 150 coronary areas were analyzed by SPECT and RTP-ASE AM and HR. SPECT showed evidence of ischemia in 13 out of 50 patients. There was no significant difference between AM and HR in detecting ischemia (p = 0.08). The agreement for AM and HR, compared to SPECT, was 93% and 96%, with Kappa values of 0.67 and 0.75, respectively (p < 0.001).</p> <p>Conclusion</p> <p>There was no significant difference between AM and HR in correctly detecting myocardial ischemia as judged by SPECT. This suggests that different types of RTP modalities give comparable data during RTP-ASE in patients with known or suspected CAD.</p

    Quantitative detection of myocardial ischaemia by stress echocardiography; a comparison with SPECT

    Get PDF
    <p>Abstract</p> <p>Aims</p> <p>Real-time perfusion (RTP) adenosine stress echocardiography (ASE) can be used to visually evaluate myocardial ischaemia. The RTP power modulation technique angio-mode (AM), provides images for off-line perfusion quantification using Qontrast<sup>® </sup>software, generating values of peak signal intensity (A), myocardial blood flow velocity (β) and myocardial blood flow (Axβ). By comparing rest and stress values, their respective reserve values (A-r, β-r, Axβ-r) are generated. We evaluated myocardial ischaemia by RTP-ASE Qontrast<sup>® </sup>quantification, compared to visual perfusion evaluation with <sup>99m</sup>Tc-tetrofosmin single-photon emission computed tomography (SPECT).</p> <p>Methods and Results</p> <p>Patients admitted to SPECT underwent RTP-ASE (SONOS 5500) using AM during Sonovue<sup>® </sup>infusion, before and throughout adenosine stress, also used for SPECT. Visual myocardial perfusion and wall motion analysis, and Qontrast<sup>® </sup>quantification, were blindly compared to one another and to SPECT, at different time points off-line.</p> <p>We analyzed 201 coronary territories (left anterior descendent [LAD], left circumflex [LCx] and right coronary [RCA] artery territories) in 67 patients. SPECT showed ischaemia in 18 patients and 19 territories. Receiver operator characteristics and kappa values showed significant agreement with SPECT only for β-r and Axβ-r in all segments: area under the curve 0.678 and 0.665; P < 0.001 and < 0.01, respectively. The closest agreements were seen in the LAD territory: kappa 0.442 for both β-r and Axβ-r; P < 0.01. Visual evaluation of ischaemia showed good agreement with SPECT: accuracy 93%; kappa 0.67; P < 0.001; without non-interpretable territories.</p> <p>Conclusion</p> <p>In this agreement study with SPECT, RTP-ASE Qontrast<sup>® </sup>quantification of myocardial ischaemia was less accurate and less feasible than visual evaluation and needs further development to be clinically useful.</p

    Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The contrasting dose of sex chromosomes in males and females potentially introduces a large-scale imbalance in levels of gene expression between sexes, and between sex chromosomes and autosomes. In many organisms, dosage compensation has thus evolved to equalize sex-linked gene expression in males and females. In mammals this is achieved by X chromosome inactivation and in flies and worms by up- or down-regulation of X-linked expression, respectively. While otherwise widespread in systems with heteromorphic sex chromosomes, the case of dosage compensation in birds (males ZZ, females ZW) remains an unsolved enigma.</p> <p>Results</p> <p>Here, we use a microarray approach to show that male chicken embryos generally express higher levels of Z-linked genes than female birds, both in soma and in gonads. The distribution of male-to-female fold-change values for Z chromosome genes is wide and has a mean of 1.4–1.6, which is consistent with absence of dosage compensation and sex-specific feedback regulation of gene expression at individual loci. Intriguingly, without global dosage compensation, the female chicken has significantly lower expression levels of Z-linked compared to autosomal genes, which is not the case in male birds.</p> <p>Conclusion</p> <p>The pronounced sex difference in gene expression is likely to contribute to sexual dimorphism among birds, and potentially has implication to avian sex determination. Importantly, this report, together with a recent study of sex-biased expression in somatic tissue of chicken, demonstrates the first example of an organism with a lack of global dosage compensation, providing an unexpected case of a viable system with large-scale imbalance in gene expression between sexes.</p

    Effects of the Histone Deacetylase Inhibitor Valproic Acid on Human Pericytes In Vitro

    Get PDF
    Microvascular pericytes are of key importance in neoformation of blood vessels, in stabilization of newly formed vessels as well as maintenance of angiostasis in resting tissues. Furthermore, pericytes are capable of differentiating into pro-fibrotic collagen type I producing fibroblasts. The present study investigates the effects of the histone deacetylase (HDAC) inhibitor valproic acid (VPA) on pericyte proliferation, cell viability, migration and differentiation. The results show that HDAC inhibition through exposure of pericytes to VPA in vitro causes the inhibition of pericyte proliferation and migration with no effect on cell viability. Pericyte exposure to the potent HDAC inhibitor Trichostatin A caused similar effects on pericyte proliferation, migration and cell viability. HDAC inhibition also inhibited pericyte differentiation into collagen type I producing fibroblasts. Given the importance of pericytes in blood vessel biology a qPCR array focusing on the expression of mRNAs coding for proteins that regulate angiogenesis was performed. The results showed that HDAC inhibition promoted transcription of genes involved in vessel stabilization/maturation in human microvascular pericytes. The present in vitro study demonstrates that VPA influences several aspects of microvascular pericyte biology and suggests an alternative mechanism by which HDAC inhibition affects blood vessels. The results raise the possibility that HDAC inhibition inhibits angiogenesis partly through promoting a pericyte phenotype associated with stabilization/maturation of blood vessels

    Sex-dependent gene expression in early brain development of chicken embryos

    No full text
    Abstract Background Differentiation of the brain during development leads to sexually dimorphic adult reproductive behavior and other neural sex dimorphisms. Genetic mechanisms independent of steroid hormones produced by the gonads have recently been suggested to partly explain these dimorphisms. Results Using cDNA microarrays and real-time PCR we found gene expression differences between the male and female embryonic brain (or whole head) that may be independent of morphological differentiation of the gonads. Genes located on the sex chromosomes (ZZ in males and ZW in females) were common among the differentially expressed genes, several of which (WPKCI-8, HINT, MHM non-coding RNA) have previously been implicated in avian sex determination. A majority of the identified genes were more highly expressed in males. Three of these genes (CDK7, CCNH and BTF2-P44) encode subunits of the transcription factor IIH complex, indicating a role for this complex in neuronal differentiation. Conclusion In conclusion, this study provides novel insights into sexually dimorphic gene expression in the embryonic chicken brain and its possible involvement in sex differentiation of the nervous system in birds.</p

    Head to head comparisons of two modalities of perfusion adenosine stress echocardiography with simultaneous SPECT

    No full text
    Background: Real-time perfusion (RTP) contrast echocardiography can be used during adenosinestress echocardiography (ASE) to evaluate myocardial ischemia. We compared two different typesof RTP power modulation techniques, angiomode (AM) and high-resolution grayscale (HR), with99mTc-tetrofosmin single-photon emission computed tomography (SPECT) for the detection ofmyocardial ischemia.Methods: Patients with known or suspected coronary artery disease (CAD), admitted to SPECT,were prospectively invited to participate. Patients underwent RTP imaging (SONOS 5500) usingAM and HR during Sonovue® infusion, before and throughout the adenosine stress, also used forSPECT. Analysis of myocardial perfusion and wall motion by RTP-ASE were done for AM and HRat different time points, blinded to one another and to SPECT. Each segment was attributed to oneof the three main coronary vessel areas of interest.Results: In 50 patients, 150 coronary areas were analyzed by SPECT and RTP-ASE AM and HR.SPECT showed evidence of ischemia in 13 out of 50 patients. There was no significant differencebetween AM and HR in detecting ischemia (p = 0.08). The agreement for AM and HR, comparedto SPECT, was 93% and 96%, with Kappa values of 0.67 and 0.75, respectively (p < 0.001).Conclusion: There was no significant difference between AM and HR in correctly detectingmyocardial ischemia as judged by SPECT. This suggests that different types of RTP modalities givecomparable data during RTP-ASE in patients with known or suspected CAD
    corecore