47 research outputs found

    Do birds of a feather flock together? Comparing habitat preferences of piscivorous waterbirds in a lowland river catchment

    Get PDF
    Waterbirds can move into and exploit new areas of suitable habitat outside of their native range. One such example is the little egret (Egretta garzetta), a piscivorous bird which has colonised southern Britain within the last 30 years. Yet, habitat use by little egrets within Britain, and how such patterns of habitat exploitation compare with native piscivores, remains unknown. We examine overlap in habitat preferences within a river catchment between the little egret and two native species, the grey heron (Ardea cinerea) and great cormorant (Phalacrocorax carbo). All species showed strong preferences for river habitat in all seasons, with other habitat types used as auxiliary feeding areas. Seasonal use of multiple habitat types is consistent with egret habitat use within its native range. We found strong egret preference for aquatic habitats, in particular freshwaters, compared with pasture and arable agricultural habitat. Egrets showed greater shared habitat preferences with herons, the native species to which egrets are most morphologically and functionally similar. This is the first study to quantify little egret habitat preferences outside of its native range

    Tracking data highlight the importance of human-induced mortality for large migratory birds at a flyway scale

    Get PDF
    Human-induced direct mortality affects huge numbers of birds each year, threatening hundreds of species worldwide. Tracking technologies can be an important tool to investigate temporal and spatial patterns of bird mortality as well as their drivers. We compiled 1704 mortality records from tracking studies across the African-Eurasian flyway for 45 species, including raptors, storks, and cranes, covering the period from 2003 to 2021. Our results show a higher frequency of human-induced causes of mortality than natural causes across taxonomic groups, geographical areas, and age classes. Moreover, we found that the frequency of human-induced mortality remained stable over the study period. From the human-induced mortality events with a known cause (n = 637), three main causes were identified: electrocution (40.5 %), illegal killing (21.7 %), and poisoning (16.3 %). Additionally, combined energy infrastructure-related mortality (i.e., electrocution, power line collision, and wind-farm collision) represented 49 % of all human-induced mortality events. Using a random forest model, the main predictors of human-induced mortality were found to be taxonomic group, geographic location (latitude and longitude), and human footprint index value at the location of mortality. Despite conservation efforts, human drivers of bird mortality in the African-Eurasian flyway do not appear to have declined over the last 15 years for the studied group of species. Results suggest that stronger conservation actions to address these threats across the flyway can reduce their impacts on species. In particular, projected future development of energy infrastructure is a representative example where application of planning, operation, and mitigation measures can enhance bird conservation
    corecore