357 research outputs found

    Stimulated emission and ultrafast carrier relaxation in InGaN multiple quantum wells

    Full text link
    Stimulated emission (SE) was measured from two InGaN multiple quantum well (MQW) laser structures with different In compositions. SE threshold power densities (I_th) increased with increasing QW depth (x). Time-resolved differential transmission measurements mapped the carrier relaxation mechanisms and explained the dependence of I_th on x. Carriers are captured from the barriers to the QWs in < 1 ps, while carrier recombination rates increased with increasing x. For excitation above I_th an additional, fast relaxation mechanism appears due to the loss of carriers in the barriers through a cascaded refilling of the QW state undergoing SE. The increased material inhomogeneity with increasing x provides additional relaxation channels outside the cascaded refilling process, removing carriers from the SE process and increasing I_th.Comment: submitted to Appl. Phys. Let

    Thermal annealing of InGaN/GaN strained-layer quantum well

    Get PDF
    Quantum well (QW) material engineering has attracted a considerable amount of interest from many people because of its ability to produce a number of optoelectronic devices. QW composition intermixing is a thermal induced interdiffusion of the constituent atoms through the hetero-interface. The intermixing process is an attractive way to achieve the modification of the QW band structure. It is known that the band structure is a fundamental determinant for such electronic and optical properties of materials as the optical gain, the refractive index and the absorption. During the process, the as-grown square-QW compositional profile is modified to a graded profile, thereby altering the confinement profile and the subband structure in the QW. The blue-shifting of the wavelength in the intermixed QW structure is found in this process. In recent years, III-nitride semiconductors have attracted much attention. This is mainly due to their large bandgap range from 1.89eV (wurtzite InN) to 3.44eV (wurtzite GaN). InGaN/GaN quantum well structures have been used to achieve high lumens blue and green light emitting diodes. Such structures also facilitate the production of full colour LED displays by complementing the colour spectrum of available LEDs. In this paper, the effects of thermal annealing on the strained-layer InGaN/GaN QW will be presented. The effects of intermixing on the confinement potential of InGaN/GaN QWs have been theoretically analysed, with sublattices interdiffusion as the basis. This process is described by Fick's law, with constant diffusion coefficients in both the well and the barrier layers. The diffusion coefficients depend on the annealing temperature, time and the activation energy of constituent atoms. The optical properties of intermixed InGaN/GaN QW structure of different interdiffusion rates have been theoretically analyzed for applications of novel optical devices. The photoluminescence studies and the intermixed QW modeling have been used to understand the effects of intermixing.published_or_final_versio

    Fabrication technology for high light-extraction ultraviolet thin-film flip-chip (UV TFFC) LEDs grown on SiC

    Full text link
    The light output of deep ultraviolet (UV-C) AlGaN light-emitting diodes (LEDs) is limited due to their poor light extraction efficiency (LEE). To improve the LEE of AlGaN LEDs, we developed a fabrication technology to process AlGaN LEDs grown on SiC into thin-film flip-chip LEDs (TFFC LEDs) with high LEE. This process transfers the AlGaN LED epi onto a new substrate by wafer-to-wafer bonding, and by removing the absorbing SiC substrate with a highly selective SF6 plasma etch that stops at the AlN buffer layer. We optimized the inductively coupled plasma (ICP) SF6 etch parameters to develop a substrate-removal process with high reliability and precise epitaxial control, without creating micromasking defects or degrading the health of the plasma etching system. The SiC etch rate by SF6 plasma was ~46 \mu m/hr at a high RF bias (400 W), and ~7 \mu m/hr at a low RF bias (49 W) with very high etch selectivity between SiC and AlN. The high SF6 etch selectivity between SiC and AlN was essential for removing the SiC substrate and exposing a pristine, smooth AlN surface. We demonstrated the epi-transfer process by fabricating high light extraction TFFC LEDs from AlGaN LEDs grown on SiC. To further enhance the light extraction, the exposed N-face AlN was anisotropically etched in dilute KOH. The LEE of the AlGaN LED improved by ~3X after KOH roughening at room temperature. This AlGaN TFFC LED process establishes a viable path to high external quantum efficiency (EQE) and power conversion efficiency (PCE) UV-C LEDs.Comment: 22 pages, 6 figures. (accepted in Semiconductor Science and Technology, SST-105156.R1 2018

    Advances in the LED Materials and Architectures fro Energy-Saving Solid State Lighting towards Lighting Revolution

    Get PDF
    Cataloged from PDF version of article.In this paper, we review the recent developments (in years 2010–2011) of energysaving solid-state lighting. The industry of white light-emitting diodes (LEDs) has made significant progress, and today, white LED market is increasing (mostly with increasing LED screen and LED TV sales). The so-called Blighting revolution[ has not yet really happened on a wide scale because of the lighting efficiency at a given ownership cost. Nevertheless, the rapid development of the white LEDs is expected to soon trigger and expand the revolution

    Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication.

    Get PDF
    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120(o) with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10(-3) over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems

    GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth

    No full text
    International audienceWe introduce GaN/InGaN light emitting diodes with a dielectric photonic crystal embedded in the epitaxial layer by lateral epitaxial overgrowth on a patterned GaN template. Overgrowth, coalescence, and epitaxial growth of the pn junction within a thickness of 500 nm is obtained using metal-organic chemical vapor deposition. This design strongly modifies the distribution of guided modes, as confirmed by angle-resolved measurements. The regime of operation and potential efficiency of such structures are discussed

    A one-dimensional model for the growth of CdTe quantum dots on Si substrates

    Full text link
    Recent experiments involving CdTe films grown on Si(111) substrates by hot wall epitaxy revealed features not previously observed [S. O. Ferreira \textit{et al.}, J. Appl. Phys. \textbf{93}, 1195 (2003)]. This system, which follows the Volmer-Weber growth mode with nucleation of isolated 3D islands for less than one monolayer of evaporated material, was described by a peculiar behavior of the quantum dot (QD) size distributions. In this work, we proposed a kinetic deposition model to reproduce these new features. The model, which includes thermally activated diffusion and evaporation of CdTe, qualitatively reproduced the experimental QD size distributions. Moreover, the model predicts a transition from Stranski-Krastanow growth mode at lower temperatures to Volmer-Weber growth mode at higher ones characterized through the QD width distributions.Comment: to appear in Physics Letters

    Lateral Confinement of Electrons in Vicinal N-polar AlGaN/GaN Heterostructure

    Full text link
    We studied orientation dependent transport in vicinal N-polar AlGaN/GaN heterostructures. We observed significant anisotropy in the current carrying charge parallel and perpendicular to the miscut direction. A quantitative estimate of the charge anisotropy was made based on gated TLM and Hall measurements. The formation of electro-statically confined one-dimensional channels is hypothesized to explain charge anisotropy. A mathematical model was used to verify that polarization charges distributed on miscut structure can create lateral one-dimensional confinement in vicinal substrates. This polarization-engineered electrostatic confinement observed is promising for new research on low-dimensional physics and devices besides providing a template for manufacturable one-dimensional devices
    • …
    corecore