31,241 research outputs found

    Non conventional screening of the Coulomb interaction in low dimensional and finite size system

    Get PDF
    We study the screening of the Coulomb interaction in non polar systems by polarizable atoms. We show that in low dimensions and small finite size systems this screening deviates strongly from that conventionally assumed. In fact in one dimension the short range interaction is strongly screened and the long range interaction is anti-screened thereby strongly reducing the gradient of the Coulomb interaction and therefore the correlation effects. We argue that this effect explains the success of mean field single particle theories for large molecules.Comment: 4 pages, 5 figure

    The Mid-Infrared Emitting Dust Around AB Aur

    Full text link
    Using the Keck I telescope, we have obtained 11.7 micron and 18.7 micron images of the circumstellar dust emission from AB Aur, a Herbig Ae star. We find that AB Aur is probably resolved at 18.7 micron with an angular diameter of 1.2" at a surface brightness of 3.5 Jy/arcsec^2. Most of the dust mass detected at millimeter wavelengths does not contribute to the 18.7 micron emission, which is plausibly explained if the system possesses a relatively cold, massive disk. We find that models with an optically thick, geometrically thin disk, surrounded by an optically thin spherical envelope fit the data somewhat better than flared disk models.Comment: ApJ in press, 4 color figure

    The Stellar Composition of the Star Formation Region CMa R1. II. Spectroscopic and Photometric Observations of 9 Young Stars

    Full text link
    We present new high and low resolution spectroscopic and photometric data of nine members of the young association CMa R1. All the stars have circumstellar dust at some distance as could be expected from their association with reflection nebulosity. Four stars (HD 52721, HD 53367, LkHalpha 220 and LkHalpha 218) show Halpha emission and we argue that they are Herbig Be stars with discs. Our photometric and spectroscopic observations on these stars reveal new characteristics of their variability. We present first interpretations of the variability of HD 52721, HD 53367 and the two LkHalpha stars in terms of a partially eclipsing binary, a magnetic activity cycle and circumstellar dust variations, respectively. The remaining five stars show no clear indications of Halpha emission in their spectra, although their spectral types and ages are comparable with those of HD 52721 and HD 53367. This indicates that the presence of a disc around a star in CMa R1 may depend on the environment of the star. In particular we find that all Halpha emission stars are located at or outside the arc-shaped border of the H II region, which suggests that the stars inside the arc have lost their discs through evaporation by UV photons from nearby O stars, or from the nearby (< 25 pc) supernova, about 1 Myr ago.Comment: 17 pages, 13 figures, accepted by MNRA

    The Approximating Hamiltonian Method for the Imperfect Boson Gas

    Full text link
    The pressure for the Imperfect (Mean Field) Boson gas can be derived in several ways. The aim of the present note is to provide a new method based on the Approximating Hamiltonian argument which is extremely simple and very general.Comment: 7 page

    Yet Another Model of Gamma-Ray Bursts

    Get PDF
    Sari and Piran have demonstrated that the time structure of gamma-ray bursts must reflect the time structure of their energy release. A model which satisfies this condition uses the electrodynamic emission of energy by the magnetized rotating ring of dense matter left by neutron star coalescence; GRB are essentially fast, high field, differentially rotating pulsars. The energy densities are large enough that the power appears as an outflowing equilibrium pair plasma, which produces the burst by baryon entrainment and subsequent internal shocks. I estimate the magnetic field and characteristic time scale for its rearrangement, which determines the observed time structure of the burst. There may be quasi-periodic oscillations at the rotational frequencies, which are predicted to range up to 5770 Hz (in a local frame). This model is one of a general class of electrodynamic accretion models which includes the Blandford and Lovelace model of AGN, and which can also be applied to black hole X-ray sources of stellar mass. The apparent efficiency of nonthermal particle acceleration is predicted to be 10--50%, but higher values are possible if the underlying accretion flow is super-Eddington. Applications to high energy gamma-ray observations of AGN are briefly discussed.Comment: 21pp, latex, uses aaspp4.st

    Explaining UXOR variability with self-shadowed disks

    Get PDF
    In this Letter we propose a new view on UX Orionis type variability. The idea is based on the earlier proposal by various authors that UXORs are nearly-edge-on disks in which hydrodynamic fluctuations could cause clumps of dust and gas to cross the line of sight. However, because the standard disk models have a flaring geometry, it is mostly the outer regions of the disk that obscure the star. The time scales for such obscuration events would be too long to match the observed time scales of weeks to months. Recent 2-D self-consistent models of Herbig Ae/Be protoplanetary disks (Dullemond et al. 2002,2003 henceforth D02/DD03), however, have indicated that for Herbig Ae/Be star disks there exists, in addition to the usual flared disks, also a new class of disks: those that are fully self-shadowed. Only their puffed-up inner rim (at the dust evaporation radius) is directly irradiated by the star, while the disk at larger radius resides in the shadow of the rim. For these disks there exist inclinations at which the line of sight towards the star skims the upper parts of the puffed-up inner rim, while passing high over the surface of outer disk regions. Small hydrodynamic fluctuations in the puffed-up inner rim could then be held responsible for the extinction events seen in UXORs. If this idea is correct, it makes a prediction for the shape of the SEDs of these stars. It was shown by D02/DD03 that flared disks have a strong far-IR excess and can be classified as `group I' (in the classification of Meeus et al. 2001), while self-shadowed disks have a relatively weak far-IR excess and are classified as `group II'. Our model therefore predicts that UXORs belong to the `group II' sources. We show that this correlation is indeed found within a sample of 86 Herbig Ae/Be stars.Comment: Accepted for publication in ApJ Letters (a few lines added to original version to accommodate comments of referee

    The Canonical Perfect Bose Gas in Casimir Boxes

    Full text link
    We study the problem of Bose-Einstein condensation in the perfect Bose gas in the canonical ensemble, in anisotropically dilated rectangular parallelpipeds (Casimir boxes). We prove that in the canonical ensemble for these anisotropic boxes there is the same type of generalized Bose-Einstein condensation as in the grand-canonical ensemble for the equivalent geometry. However the amount of condensate in the individual states is different in some cases and so are the fluctuations.Comment: 23 page

    Long Gamma-Ray Bursts and Type Ic Core Collapse Supernovae Have Similar Locations in Hosts

    Full text link
    When the afterglow fades at the site of a long-duration gamma-ray burst (LGRB), Type Ic supernovae (SN Ic) are the only type of core collapse supernova observed. Recent work found that a sample of LGRB in high-redshift galaxies had different environments from a collection of core-collapse environments, which were identified from their colors and light curves. LGRB were in the brightest regions of their hosts, but the core-collapse sample followed the overall distribution of the galaxy light. Here we examine 504 supernovae with types assigned based on their spectra that are located in nearby (z < 0.06) galaxies for which we have constructed surface photometry from the Sloan Digital Sky Survey (SDSS). The distributions of the thermonuclear supernovae (SN Ia) and some varieties of core-collapse supernovae (SN II and SN Ib) follow the galaxy light, but the SN Ic (like LGRB) are much more likely to erupt in the brightest regions of their hosts. The high-redshift hosts of LGRB are overwhelmingly irregulars, without bulges, while many low redshift SN Ic hosts are spirals with small bulges. When we remove the bulge light from our low-redshift sample, the SN Ic and LGRB distributions agree extremely well. If both LGRB and SN Ic stem from very massive stars, then it seems plausible that the conditions necessary for forming SN Ic are also required for LGRB. Additional factors, including metallicity, may determine whether the stellar evolution of a massive star leads to a LGRB with an underlying broad-lined SN Ic, or simply a SN Ic without a gamma-ray burst.Comment: Accepted by the Astrophysical Journal, 12 pages, 3 tables, 4 figures, SN sample size increases from 263 to 504 in v2, varying host magnitude and distance shown not to introduce systematic error in measurement

    Chaotic synchronization of coupled electron-wave systems with backward waves

    Full text link
    The chaotic synchronization of two electron-wave media with interacting backward waves and cubic phase nonlinearity is investigated in the paper. To detect the chaotic synchronization regime we use a new approach, the so-called time scale synchronization [Chaos, 14 (3) 603-610 (2004)]. This approach is based on the consideration of the infinite set of chaotic signals' phases introduced by means of continuous wavelet transform. The complex space-time dynamics of the active media and mechanisms of the time scale synchronization appearance are considered.Comment: 11 pages, 7 figures, published in CHAOS, 15 (2005) 01370
    corecore