472 research outputs found

    Higher-order cognitive factors affect subjective but not proprioceptive aspects of self-representation in the rubber hand illusion

    Get PDF
    In the current study we look at whether subjective and proprioceptive aspects of selfrepresentation are separable components subserved by distinct systems of multisensory integration. We used the rubber hand illusion (RHI) to draw the location of the ‘self’ away from the body, towards extracorporeal space (Out Condition), thereby violating top-down information about the body location. This was compared with the traditional RHI which drew position of the ‘self’ towards the body (In Condition). We were successfully able to draw proprioceptive position of the limbs in and out from the body suggesting body perception is a purely bottom-up process, resistant to top-down effects. Conversely, we found subjective self-representation was altered by the violation of top-down body information – as the strong association of subjective and proprioceptive factors found in the In Condition became non-significant in the Out Condition. Interestingly, we also found evidence that subjective embodiment can modulate tactile perception

    Handedness modulates proprioceptive drift in the rubber hand illusion

    Get PDF
    Preference for use of either the left or right hand ('handedness') has been linked with modulations of perception and sensory processing-both of space and the body. Here we ask whether multisensory integration of bodily information also varies as a function of handedness. We created a spatial disparity between visual and somatosensory hand position information using the rubber hand illusion, and use the magnitude of illusory shifts in hand position (proprioceptive 'drift') as a tool to probe the weighted integration of multisensory information. First, we found drift was significantly reduced when the illusion was performed on the dominant vs. non-dominant hand. We suggest increased manual dexterity of the dominant hand causes greater representational stability and thus an increased resistance to bias by the illusion induction. Second, drift was generally greatest when the hand was in its habitual action space (i.e., near the shoulder of origin), compared to when it laterally displaced towards, or across the midline. This linear effect, however, was only significant for the dominant hand-in both left- and right-handed groups. Thus, our results reveal patterns of habitual hand action modulate drift both within a hand (drift varies with proximity to action space), and between hands (differences in drift between the dominant and non-dominant hands). In contrast, we were unable to find conclusive evidence to support, or contradict, an overall difference between left- and right-handers in susceptibility to RHI drift (i.e., total drift, collapsed across hand positions). In sum, our results provide evidence that patterns of daily activity-and the subsequent patterns of sensory input-shape multisensory integration across space

    Does Training on Broad Band Tactile Stimulation Promote the Generalization of Perceptual Learning?

    Get PDF
    Given the clear role of sensory feedback in successful motor control, there is a growing interest in integrating substitutionary tactile feedback into robotic limb devices. To enhance the utility of such feedback, here we investigate how to best improve the limited generalization of tactile learning across body parts and stimulus properties. Specifically, we sought to understand how perceptual learning with different types of tactile stimuli may give rise to different patterns of learning generalization. To address this, we utilized vibro-tactile effectors to present patterns of stimulation in a match-to-sample paradigm. One group of participants trained on narrow-band stimulation consisting of simple sinusoidal vibrations, and the other on broad-band stimulation generated from music. We hypothesized that training on broad-band tactile stimulation would promote greater generalization of learning outcomes. We found training with broad-band stimuli generalized to underlying stimulus features of frequency discrimination but showed weaker generalization to un-trained digits. This study provides a first step towards devising perceptual learning paradigms that will generalize broadly to the untrained perceptual contexts

    Human perceptual learning is delayed by the N-methyl-D-aspartate receptor partial agonist D-cycloserine

    Get PDF
    Background: The optimisation of learning has long been a focus of scientific research, particularly in relation to improving psychological treatment and recovery of brain function. Previously, partial N-methyl-D-aspartate agonists have been shown to augment reward learning, procedural learning and psychological therapy, but many studies also report no impact of these compounds on the same processes. Aims: Here we investigate whether administration of an N-methyl-D-aspartate partial agonist (D-cycloserine) modulates a previously unexplored process – tactile perceptual learning. Further, we use a longitudinal design to investigate whether N-methyl-D-aspartate-related learning effects vary with time, thereby providing a potentially simple explanation for apparent mixed effects in previous research. Methods: Thirty-four volunteers were randomised to receive one dose of 250 mg D-cycloserine or placebo 2 h before tactile sensitivity training. Tactile perception was measured using psychophysical methods before and after training, and 24/48 h later. Results: The placebo group showed immediate within-day tactile perception gains, but no further improvements between-days. In contrast, tactile perception remained at baseline on day one in the D-cycloserine group (no within-day learning), but showed significant overnight gains on day two. Both groups were equivalent in tactile perception by the final testing – indicating N-methyl-D-aspartate effects changed the timing, but not the overall amount of tactile learning. Conclusions: In sum, we provide first evidence for modulation of perceptual learning by administration of a partial N-methyl-D-aspartate agonist. Resolving how the effects of such compounds become apparent over time will assist the optimisation of testing schedules, and may help resolve discrepancies across the learning and cognition domains

    Intrinsic somatosensory feedback supports motor control and learning to operate artificial body parts

    Get PDF
    Objective Considerable resources are being invested to enhance the control and usability of artificial limbs through the delivery of unnatural forms of somatosensory feedback. Here, we investigated whether intrinsic somatosensory information from the body part(s) remotely controlling an artificial limb can be leveraged by the motor system to support control and skill learning. Approach In a placebo-controlled design, we used local anaesthetic to attenuate somatosensory inputs to the big toes while participants learned to operate through pressure sensors a toe-controlled and hand-worn robotic extra finger. Motor learning outcomes were compared against a control group who received sham anaesthetic and quantified in three different task scenarios: while operating in isolation from, in synchronous coordination, and collaboration with, the biological fingers. Main results Both groups were able to learn to operate the robotic extra finger, presumably due to abundance of visual feedback and other relevant sensory cues. Importantly, the availability of displaced somatosensory cues from the distal bodily controllers facilitated the acquisition of isolated robotic finger movements, the retention and transfer of synchronous hand-robot coordination skills, and performance under cognitive load. Motor performance was not impaired by toes anaesthesia when tasks involved close collaboration with the biological fingers, indicating that the motor system can close the sensory feedback gap by dynamically integrating task-intrinsic somatosensory signals from multiple, and even distal, body- parts. Significance Together, our findings demonstrate that there are multiple natural avenues to provide intrinsic surrogate somatosensory information to support motor control of an artificial body part, beyond artificial stimulation

    Directly or indirectly? The role of social support in the psychological pathways underlying suicidal ideation in people with bipolar disorder

    Get PDF
    Contemporary theories of suicide, such as the Schematic Appraisals Model (SAMS), hypothesize that negative perceptions of social support are implicated in the pathways to suicidal experiences. The SAMS predicts that perceived social support influences suicidal ideation through appraisals of defeat and entrapment. However, such pathways have not been investigated with people who have bipolar disorder. This prospective four-month study tested the influence of perceived social support on later suicidal ideation via changes in defeat, entrapment, and hopelessness, in a sample of eighty euthymic participants with bipolar disorder (N = 62 at follow-up). Linear regression models tested the extent to which perceived social support at baseline predicted changes in suicidal ideation at four months directly and indirectly via changes in defeat, entrapment, and hopelessness. Perceived social support did not directly predict changes in suicidal ideation, but there was a significant indirect mediational pathway between perceived social support at baseline and changes in suicidal ideation over time, via changes in defeat, entrapment and hopelessness, supporting the SAMS. Psychological interventions which target negative perceptions of social support early, in tandem with addressing defeat, entrapment and hopelessness over time, present a potentially effective approach to counter suicidal ideation in people who experience bipolar disorder

    The types of psychosocial factors associated with suicidality outcomes for people living with Bipolar Disorder: a scoping review

    Get PDF
    Bipolar Disorder is associated with high rates of suicidal thoughts, behaviors, and outcomes, yet the lived experience of suicidality and Bipolar Disorder is not particularly well understood. Understanding the role of psychosocial aetiologies in suicidality outcomes for those living with Bipolar Disorder is key for developing appropriately targeted interventions focusing on factors that are amenable to change. In line with PRISMA guidance, we conducted a scoping review to identify the types of psychosocial factors studied in relation to the experience of suicidality for people living with Bipolar Disorder diagnoses. Systematic literature searches identified a sample of 166 articles from which key study data were extracted and charted. A narrative synthesis of the reviewed literature is presented ordered by the factors investigated across studies, a frequency count of the types of psychological/social aetiologies studied, and a brief overview of the key findings for each aetiology. Most of the identified literature took the form of quantitative cross-sectional studies, with only one qualitative study and 18 quantitative prospective studies. The most studied aetiologies were trauma (specifically early adverse experiences and childhood traumas) and stressful life events, impulsivity (primarily subjective self-reported trait impulsivity), social support and functioning, and personality/temperament factors. Only six studies in the final sample reported basing their research questions and/or hypotheses on an explicit theoretical model of suicide. The literature was primarily focused on using self-report measurements of key aetiologies and on factors which lead to worsened suicidality rather than focusing on potentially protective or buffering factors. Future research needs to better justify the aetiologies investigated in relation to suicidality outcomes for people living with Bipolar Disorder, including a firmer basis in theory and hypothesis testing, more prospective designs, and the use of alternative assessments of psychosocial aetiologies in addition to self-report questionnaire

    A Search for Propylene Oxide and Glycine in Sagittarius B2 (LMH) and Orion

    Full text link
    We have used the Mopra Telescope to search for glycine and the simple chiral molecule propylene oxide in the Sgr B2 (LMH) and Orion KL, in the 3-mm band. We have not detected either species, but have been able to put sensitive upper limits on the abundances of both molecules. The 3-sigma upper limits derived for glycine conformer I are 3.7 x 10^{14} cm^{-2} in both Orion-KL and Sgr B2 (LMH), comparable to the reported detections of conformer I by Kuan et al. However, as our values are 3-sigma upper limits rather than detections we conclude that this weighs against confirming the detection of Kuan et al. We find upper limits for the glycine II column density of 7.7 x 10^{12} cm^{-2} in both Orion-KL and Sgr B2 (LMH), in agreement with the results of Combes et al. The results presented here show that glycine conformer II is not present in the extended gas at the levels detected by Kuan et al. for conformer I. Our ATCA results (Jones et al.) have ruled out the detection of glycine (both conformers I and II) in the compact hot core of the LMH at the levels reported, so we conclude that it is unlikely that Kuan et al. have detected glycine in either Sgr B2 or Orion-KL. We find upper limits for propylene oxide abundance of 3.0 x 10^{14} cm^{-2} in Orion-KL and 6.7 x 10^{14} cm^{-2} in Sgr B2 (LMH). We have detected fourteen features in Sgr B2 and four features in Orion-KL which have not previously been reported in the ISM, but have not be able to plausibly assign these transitions to any carrier.Comment: 12 pages, 3 figures. Accepted by MNRAS 12th January 200

    Interdependency of EGF and GLP-2 Signaling in Attenuating Mucosal Atrophy in a Mouse Model of Parenteral Nutrition

    Get PDF
    BACKGROUND & AIMS: Total parenteral nutrition (TPN), a crucial treatment for patients who cannot receive enteral nutrition, is associated with mucosal atrophy, barrier dysfunction, and infectious complications. Glucagon-like peptide-2 (GLP-2) and epidermal growth factor (EGF) improve intestinal epithelial cell (IEC) responses and attenuate mucosal atrophy in several TPN models. However, it remains unclear whether these 2 factors use distinct or overlapping signaling pathways to improve IEC responses. We investigated the interaction of GLP-2 and EGF signaling in a mouse TPN model and in patients deprived of enteral nutrition. METHODS: Adult C57BL/6J, IEC-Egfrknock out (KO) and IEC-pik3r1KO mice receiving TPN or enteral nutrition were treated with EGF or GLP-2 alone or in combination with reciprocal receptor inhibitors, GLP-2(3-33) or gefitinib. Jejunum was collected and mucosal atrophy and IEC responses were assessed by histologic, gene, and protein expression analyses. In patients undergoing planned looped ileostomies, fed and unfed ileum was analyzed. RESULTS: Enteral nutrient deprivation reduced endogenous EGF and GLP-2 signaling in mice and human beings. In the mouse TPN model, exogenous EGF or GLP-2 attenuated mucosal atrophy and restored IEC proliferation. The beneficial effects of EGF and GLP-2 were decreased upon Gefitinib treatment and in TPN-treated IEC-EgfrKO mice, showing epidermal growth factor–receptor dependency for these IEC responses. By contrast, in TPN-treated IEC-pi3kr1KO mice, the beneficial actions of EGF were lost, although GLP-2 still attenuated mucosal atrophy. CONCLUSIONS: Upon enteral nutrient deprivation, exogenous GLP-2 and EGF show strong interdependency for improving IEC responses. Understanding the differential requirements for phosphatidylinositol 3-kinase/phosphoAKT (Ser473) signaling may help improve future therapies to prevent mucosal atrophy

    Interdependency of EGF and GLP-2 Signaling in Attenuating Mucosal Atrophy in a Mouse Model of Parenteral Nutrition

    Get PDF
    Background & Aims: Total parenteral nutrition (TPN), a crucial treatment for patients who cannot receive enteral nutrition, is associated with mucosal atrophy, barrier dysfunction, and infectious complications. Glucagon-like peptide-2 (GLP-2) and epidermal growth factor (EGF) improve intestinal epithelial cell (IEC) responses and attenuate mucosal atrophy in several TPN models. However, it remains unclear whether these 2 factors use distinct or overlapping signaling pathways to improve IEC responses. We investigated the interaction of GLP-2 and EGF signaling in a mouse TPN model and in patients deprived of enteral nutrition. Methods: Adult C57BL/6J, IEC-Egfrknock out (KO) and IEC-pik3r1KO mice receiving TPN or enteral nutrition were treated with EGF or GLP-2 alone or in combination with reciprocal receptor inhibitors, GLP-2(3-33) or gefitinib. Jejunum was collected and mucosal atrophy and IEC responses were assessed by histologic, gene, and protein expression analyses. In patients undergoing planned looped ileostomies, fed and unfed ileum was analyzed. Results: Enteral nutrient deprivation reduced endogenous EGF and GLP-2 signaling in mice and human beings. In the mouse TPN model, exogenous EGF or GLP-2 attenuated mucosal atrophy and restored IEC proliferation. The beneficial effects of EGF and GLP-2 were decreased upon Gefitinib treatment and in TPN-treated IEC-EgfrKO mice, showing epidermal growth factorâreceptor dependency for these IEC responses. By contrast, in TPN-treated IEC-pi3kr1KO mice, the beneficial actions of EGF were lost, although GLP-2 still attenuated mucosal atrophy. Conclusions: Upon enteral nutrient deprivation, exogenous GLP-2 and EGF show strong interdependency for improving IEC responses. Understanding the differential requirements for phosphatidylinositol 3-kinase/phosphoAKT (Ser473) signaling may help improve future therapies to prevent mucosal atrophy. Keywords: Total Parenteral Nutrition, EGF, GLP-2, EGFR, PI3K, Mucosal Atroph
    • …
    corecore