284 research outputs found

    The Dynamical Instability of Static, Spherically Symmetric Solutions in Nonsymmetric Gravitational Theories

    Get PDF
    We consider the dynamical stability of a class of static, spherically-symmetric solutions of the nonsymmetric gravitational theory. We numerically reproduce the Wyman solution and generate new solutions for the case where the theory has a nontrivial fundamental length scale \mu^{-1}. By considering spherically symmetric perturbations of these solutions we show that the Wyman solutions are generically unstable.Comment: 13 pages, uses amslatex, graphicx and subfigure package

    The good, the bad and the ugly

    Get PDF
    This paper discusses the neo-logicist approach to the foundations of mathematics by highlighting an issue that arises from looking at the Bad Company objection from an epistemological perspective. For the most part, our issue is independent of the details of any resolution of the Bad Company objection and, as we will show, it concerns other foundational approaches in the philosophy of mathematics. In the first two sections, we give a brief overview of the "Scottish" neo-logicist school, present a generic form of the Bad Company objection and introduce an epistemic issue connected to this general problem that will be the focus of the rest of the paper. In the third section, we present an alternative approach within philosophy of mathematics, a view that emerges from Hilbert's Grundlagen der Geometrie (1899, Leipzig: Teubner; Foundations of geometry (trans.: Townsend, E.). La Salle, Illinois: Open Court, 1959.). We will argue that Bad Company-style worries, and our concomitant epistemic issue, also affects this conception and other foundationalist approaches. In the following sections, we then offer various ways to address our epistemic concern, arguing, in the end, that none resolves the issue. The final section offers our own resolution which, however, runs against the foundationalist spirit of the Scottish neo-logicist program

    Effect of vitamin E (Tri E®) on antioxidant enzymes and DNA damage in rats following eight weeks exercise

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exercise is beneficial to health, but during exercise the body generates reactive oxygen species (ROS) which are known to result in oxidative stress. The present study analysed the effects of vitamin E (Tri E<sup>®</sup>) on antioxidant enzymes; superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (Cat) activity and DNA damage in rats undergoing eight weeks exercise.</p> <p>Methods</p> <p>Twenty four <it>Sprague-Dawley </it>rats (weighing 320-370 gm) were divided into four groups; a control group of sedentary rats which were given a normal diet, second group of sedentary rats with oral supplementation of 30 mg/kg/d of Tri E<sup>®</sup>, third group comprised of exercised rats on a normal diet, and the fourth group of exercised rats with oral supplementation of 30 mg/kg/d of Tri E<sup>®</sup>. The exercising rats were trained on a treadmill for 30 minutes per day for 8 weeks. Blood samples were taken before and after 8 weeks of the study to determine SOD, GPx, Cat activities and DNA damage.</p> <p>Results</p> <p>SOD activity decreased significantly in all the groups compared to baseline, however both exercised groups showed significant reduction in SOD activity as compared to the sedentary groups. Sedentary control groups showed significantly higher GPx and Cat activity compared to baseline and exercised groups. The supplemented groups, both exercised and non exercised groups, showed significant decrease in Cat activity as compared to their control groups with normal diet. DNA damage was significantly higher in exercising rats as compared to sedentary control. However in exercising groups, the DNA damage in supplemented group is significantly lower as compared to the non-supplemented group.</p> <p>Conclusions</p> <p>In conclusion, antioxidant enzymes activity were generally reduced in rats supplemented with Tri E<sup>® </sup>probably due to its synergistic anti-oxidative defence, as evidenced by the decrease in DNA damage in Tri E<sup>® </sup>supplemented exercise group.</p

    Emerging Roles of PAR-1 and PAFR in Melanoma Metastasis

    Get PDF
    Melanoma growth, angiogenesis and metastatic progression are strongly promoted by the inflammatory tumor microenvironment due to high levels of cytokine and chemokine secretion by the recruited inflammatory and stromal cells. In addition, platelets and molecular components of procoagulant pathways have been recently emerging as critical players of tumor growth and metastasis. In particular, thrombin, through the activity of its receptor protease-activated receptor-1 (PAR-1), regulates tumor cell adhesion to platelets and endothelial cells, stimulates tumor angiogenesis, and promotes tumor growth and metastasis. Notably, in many tumor types including melanoma, PAR-1 expression directly correlates with their metastatic phenotype and is directly responsible for the expression of interleukin-8, matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor, platelet-derived growth factor, and integrins. Another proinflammatory receptor–ligand pair, platelet-activating factor (PAF) and its receptor (PAFR), have been shown to act as important modulators of tumor cell adhesion to endothelial cells, angiogenesis, tumor growth and metastasis. PAF is a bioactive lipid produced by a variety of cells from membrane glycerophospholipids in the same reaction that releases arachidonic acid, and can be secreted by platelets, inflammatory cells, keratinocytes and endothelial cells. We have demonstrated that in metastatic melanoma cells, PAF stimulates the phosphorylation of cyclic adenosine monophosphate response element-binding protein (CREB) and activating transcription factor 1 (ATF-1), which results in overexpression of MMP-2 and membrane type 1-MMP (membrane type 1-MMP). Since only metastatic melanoma cells overexpress CREB/ATF-1, we propose that metastatic melanoma cells are better equipped than their non-metastatic counterparts to respond to PAF within the tumor microenvironment. The evidence supporting the hypothesis that the two G-protein coupled receptors, PAR-1 and PAFR, contribute to the acquisition of the metastatic phenotype of melanoma is presented and discussed

    Natural flavonoids as potential multifunctional agents in prevention of diabetic cataract

    Get PDF
    Cataract is one of the earliest secondary complications of diabetes mellitus. The lens is a closed system with limited capability to repair or regenerate itself. Current evidence supports the view that cataractogenesis is a multifactorial process. Mechanisms related to glucose toxicity, namely oxidative stress, processes of non-enzymatic glycation and enhanced polyol pathway significantly contribute to the development of eye lens opacity under conditions of diabetes. There is an urgent need for inexpensive, non-surgical approaches to the treatment of cataract. Recently, considerable attention has been devoted to the search for phytochemical therapeutics. Several pharmacological actions of natural flavonoids may operate in the prevention of cataract since flavonoids are capable of affecting multiple mechanisms or etiological factors responsible for the development of diabetic cataract. In the present paper, natural flavonoids are reviewed as potential agents that could reduce the risk of cataract formation via affecting multiple pathways pertinent to eye lens opacification. In addition, the bioavailability of flavonoids for the lens is considered

    Impact of inactivity and exercise on the vasculature in humans

    Get PDF
    The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct “vascular deconditioning and conditioning” effects which likely modify cardiovascular risk

    Reconsidering the Carnap-Kuhn Connection

    Get PDF
    Recently, some philosophers of science (e.g., Gürol Irzik, Michael Friedman) have challenged the ‘received view’ on the relationship between Rudolf Carnap and Thomas Kuhn, suggesting that there is a close affinity (rather than opposition) between their philosophical views. In support of this argument, these authors cite Carnap and Kuhn’s similar views on incommensurability, theory-choice, and scientific revolutions. Against this revisionist view, I argue that the philosophical relationship between Carnap and Kuhn should be regarded as opposed rather than complementary. In particular, I argue that a consideration of the fundamentally disparate nature of the broader philosophical projects of Carnap (logic of science) and Kuhn (providing a theory of scientific revolutions)renders the alleged similarities between their views superficial in comparison to their fundamental differences. In defense of the received view, I suggest that Carnap and Kuhn are model representatives of two contrasting styles of doing philosophy of science, viz., logical analysis and historical analysis respectively. This analysis clarifies the role played by Kuhn’s Structure of Scientific Revolutions in the demise of logical empiricism in the second half of the twentieth-century
    corecore