31 research outputs found

    Macrobenthic infaunal communities associated with deep‐sea hydrocarbon seeps in the northern Gulf of Mexico

    Get PDF
    There are thousands of seeps in the deep ocean worldwide; however, many questions remain about their contributions to global biodiversity and the surrounding deep‐sea environment. In addition to being globally distributed, seeps provide several benefits to humans such as unique habitats, organisms with novel genes, and carbon regulation. The purpose of this study is to determine whether there are unique seep macrobenthic assemblages, by comparing seep and nonseep environments, different seep habitats, and seeps at different depths and locations. Infaunal community composition, diversity, and abundance were examined between seep and nonseep background environments and among three seep habitats (i.e., microbial mats, tubeworms, and soft‐bottom seeps). Abundances were higher at seep sites compared to background areas. Abundance and diversity also differed among microbial mat, tubeworm, and soft‐bottom seep habitats. Although seeps contained different macrobenthic assemblages than nonseep areas, infaunal communities were also generally unique for each seep. Variability was 75% greater within communities near seeps compared to communities in background areas. Thus, high variability in community structure characterized seep communities rather than specific taxa. The lack of similarity among seep sites supports the idea that there are no specific infauna that can be used as indicators of seepage throughout the northern Gulf of Mexico, at least at higher taxonomic levels

    Evaluation of excess 234Th activity in sediments as an indicator of food quality for deep-sea deposit feeders

    Get PDF
    Deep-sea deposit feeders selectively ingest large volumes of sediment. Knowledge of the nature of this selectivity will help to elucidate the limiting nutritional requirements and geochemical impacts of these abundant animals. Shallow-water and theoretical studies suggest that deep-sea deposit feeders should select particles rich in protein, bacterial biomass, and/or chloropigment concentrations. Recent studies indicate that deep-sea megafaunal deposit feeders exhibit strong gut enrichment of excess (xs) 234Th activity, even though 234Thxs lacks nutritional value. To explore the significance of selective ingestion of 234Thxs activity, we evaluated the correlations between 234Thxs activity and three potential tracers of deposit feeder food quality: chlorophyll a (chl a), enzymatically hydrolyzable amino acids (EHAA), and adenosine triphosphate (ATP). Surface sediments from three quiescent bathyal basins off Southern California (San Nicolas, Santa Catalina, and San Clemente) were collected by a multiple corer and analyzed for 234Thxs activity, chl a, EHAA, ATP, and total organic carbon and nitrogen. 234Thxs activity was positively correlated with chl a and phaeopigment concentrations and negatively correlated with EHAA concentrations. Excess 234Th was not linearly correlated with concentrations of ATP, organic carbon, or total nitrogen. The results suggest that deep-sea deposit feeders select sediments with high 234Thxs activity because it is associated with recently settled phytodetrital material. There is no evidence that this 234Thxs-rich material has particularly high concentrations of labile amino acids or microbial biomass. Phytodetrital material may be an important source of some other limiting nutrient to deep-sea deposit feeders, e.g., polyunsaturated fatty acids, labile organic carbon and/or vitamins

    Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean

    Get PDF
    © The Author(s), 2017. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 123 (2017): 90–104, doi:10.1016/j.dsr.2017.03.009.Recent investigations of demersal fish communities in deepwater (>50 m) habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. While different habitat types influence deepwater fish distribution, whether different types of rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, different types of rugged features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to compare demersal fish communities across various features. Concurrently, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across different features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 remotely operated vehicle dives across 18 sites, identifying 156 species of which 42% of had not been previously recorded from particular depths or localities in the region. While rarefaction curves indicated fewer species at seamounts than at other features in the NE Caribbean, assemblage structure was similar among the different types of features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other types of rugged features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and may be driven by changes in water mass characteristics including temperature (4.8–24.4 °C) and dissolved oxygen (2.2–9.5 mg per l). Our study suggests the importance of water masses in influencing community structure of benthic fauna, while considerably adding to the knowledge of mesophotic and deep-sea fish biogeography.Funding was provided by NOAA-OER for the 2014 E/V Nautilus cruise and by the USGS Environments and Hazards Program and Ocean Exploration Trust for the 2013 E/V Nautilus 807 cruise.2019-03-1

    Corrigendum to “Insights into methane dynamics from analysis of authigenic carbonates and chemosynthetic mussels at newly-discovered Atlantic Margin seeps” [Earth Planet. Sci. Lett. 449 (2016) 332–344]

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Earth and Planetary Science Letters 475 (2017): 268, doi:10.1016/j.epsl.2017.07.037

    Macrobenthic infaunal communities associated with deep‐sea hydrocarbon seeps in the northern Gulf of Mexico

    Get PDF
    There are thousands of seeps in the deep ocean worldwide; however, many questions remain about their contributions to global biodiversity and the surrounding deep‐sea environment. In addition to being globally distributed, seeps provide several benefits to humans such as unique habitats, organisms with novel genes, and carbon regulation. The purpose of this study is to determine whether there are unique seep macrobenthic assemblages, by comparing seep and nonseep environments, different seep habitats, and seeps at different depths and locations. Infaunal community composition, diversity, and abundance were examined between seep and nonseep background environments and among three seep habitats (i.e., microbial mats, tubeworms, and soft‐bottom seeps). Abundances were higher at seep sites compared to background areas. Abundance and diversity also differed among microbial mat, tubeworm, and soft‐bottom seep habitats. Although seeps contained different macrobenthic assemblages than nonseep areas, infaunal communities were also generally unique for each seep. Variability was 75% greater within communities near seeps compared to communities in background areas. Thus, high variability in community structure characterized seep communities rather than specific taxa. The lack of similarity among seep sites supports the idea that there are no specific infauna that can be used as indicators of seepage throughout the northern Gulf of Mexico, at least at higher taxonomic levels

    Exploring US Mid-Atlantic Margin methane seeps : IMMeRSS, May 2017

    No full text
    Author Posting. © The Oceanography Society, 2018. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 31, no. 1, supplement (2018): 93

    Stable isotope dynamics of herbivorous reef fishes and their ectoparasites

    No full text
    Acanthurids (surgeonfishes) are an abundant and diverse group of herbivorous fishes on coral reefs. While their contribution to trophic linkages and dynamics in coral reef systems has received considerable attention, the role of linkages involving their parasites has not. As both consumers of fish tissue and prey to microcarnivores, external parasites may play a significant role in trophic transfer between primary consumers (and hence their predominantly algae-based diet) and the broader coral reef community. Stable isotope analysis is a common tool for studying trophic linkages which can be used for studies involving parasites. We examined the stable isotope ecology (13C and 15N) of copepod (Caligus atromaculatus) and monogenean (Neobenedenia sp.) ectoparasites collected from two species of Caribbean acanthurids (Acanthurus coeruleus and Acanthurus bahianus). There were significant intraspecific differences in isotope discrimination factors between parasites collected from the two different host species as well as interspecific differences between parasites collected from the same host species. Discrimination factors for 15N were consistently positive but varied in magnitude depending on host and parasite species and were slightly lower than what would be expected for consumers. The 13C discrimination factors for both monogeneans and copepods collected from A. coeruleus were consistently positive but were negative for copepods collected from A. bahianus. These findings emphasize the complexity of the stable isotope trophic interactions occurring between parasites and their hosts, highlighting the value of these types of host-parasite isotopic studie
    corecore