57 research outputs found

    On frequency measurements and resolution

    Get PDF
    Sine wave frequency measurements and resolutio

    The GSFC scientific data storage problem

    Get PDF
    Scientific data storage problems of telemetry tape

    Mesoscopic effects in tunneling between parallel quantum wires

    Full text link
    We consider a phase-coherent system of two parallel quantum wires that are coupled via a tunneling barrier of finite length. The usual perturbative treatment of tunneling fails in this case, even in the diffusive limit, once the length L of the coupling region exceeds a characteristic length scale L_t set by tunneling. Exact solution of the scattering problem posed by the extended tunneling barrier allows us to compute tunneling conductances as a function of applied voltage and magnetic field. We take into account charging effects in the quantum wires due to applied voltages and find that these are important for 1D-to-1D tunneling transport.Comment: 8 pages, 7 figures, improved Figs., added Refs. and appendix, to appear in Phys. Rev.

    Tunneling Between Two-Dimensional Electron Gases in a Strong Magnetic Field

    Full text link
    We have measured the tunneling between two two-dimensional electron gases at high magnetic fields BB, when the carrier densities of the two electron layers are matched. For filling factors ν<1\nu<1, there is a gap in the current-voltage characteristics centered about V=0V=0, followed by a tunneling peak at 6\sim 6~mV. Both features have been observed before and have been attributed to electron-electron interactions within a layer. We have measured high field tunneling peak positions and fitted gap parameters that are proportional to BB, and independent of the carrier densities of the two layers. This suggests a different origin for the gap to that proposed by current theories, which predict a B\sqrt{B} dependence.Comment: 9 pages, cond-mat/yymmnn

    Strategic and practical guidelines for successful structured illumination microscopy

    Get PDF
    Linear 2D- or 3D-structured illumination microscopy (SIM or3D-SIM, respectively) enables multicolor volumetric imaging of fixed and live specimens with subdiffraction resolution in all spatial dimensions. However, the reliance of SIM on algorithmic post-processing renders it particularly sensitive to artifacts that may reduce resolution, compromise data and its interpretations, and drain resources in terms of money and time spent. Here we present a protocol that allows users to generate high-quality SIM data while accounting and correcting for common artifacts. The protocol details preparation of calibration bead slides designed for SIM-based experiments, the acquisition of calibration data, the documentation of typically encountered SIM artifacts and corrective measures that should be taken to reduce them. It also includes a conceptual overview and checklist for experimental design and calibration decisions, and is applicable to any commercially available or custom platform. This protocol, plus accompanying guidelines, allows researchers from students to imaging professionals to create an optimal SIM imaging environment regardless of specimen type or structure of interest. The calibration sample preparation and system calibration protocol can be executed within 1-2 d

    Computational geometry analysis of dendritic spines by structured illumination microscopy

    Get PDF
    We are currently short of methods that can extract objective parameters of dendritic spines useful for their categorization. Authors present in this study an automatic analytical pipeline for spine geometry using 3D-structured illumination microscopy, which can effectively extract many geometrical parameters of dendritic spines without bias and automatically categorize spine population based on their morphological feature

    Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci

    Get PDF
    Background: A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results: We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an `autosomal Barr body' with less compacted chromatin and incomplete RNAP II exclusion. Conclusions: 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi

    Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy

    No full text
    In female mammals, one of the two X chromosomes is transcriptionally silenced to equalize X-linked gene dosage relative to XY males, a process termed X chromosome inactivation. Mechanistically, this is thought to occur via directed recruitment of chromatin modifying factors by the master regulator, X-inactive specific transcript (Xist) RNA, which localizes in cis along the entire length of the chromosome. A well-studied example is the recruitment of polycomb repressive complex 2 (PRC2), for which there is evidence of a direct interaction involving the PRC2 proteins Enhancer of zeste 2 (Ezh2) and Supressor of zeste 12 (Suz12) and the A-repeat region located at the 5' end of Xist RNA. In this study, we have analyzed Xist-mediated recruitment of PRC2 using two approaches, microarraybased epigenomic mapping and superresolution 3D structured illumination microscopy. Making use of an ES cell line carrying an inducible Xist transgene located on mouse chromosome 17, we show that 24 h after synchronous induction of Xist expression, acquired PRC2 binding sites map predominantly to generich regions, notably within gene bodies. Paradoxically, these new sites of PRC2 deposition do not correlate with Xist-mediated gene silencing. The 3D structured illumination microscopy was performed to assess the relative localization of PRC2 proteins and Xist RNA. Unexpectedly, we observed significant spatial separation and absence of colocalization both in the inducible Xist transgene ES cell line and in normal XX somatic cells. Our observations argue against direct interaction between Xist RNA and PRC2 proteins and, as such, prompt a reappraisal of the mechanism for PRC2 recruitment in X chromosome inactivation
    corecore