102 research outputs found

    Ongoing Astrometric Microlensing Events of Two Nearby Stars

    Full text link
    Context. Astrometric microlensing is an excellent tool to determine the mass of a stellar object. By measuring the astrometric shift of a background source star in combination with precise predictions of its unlensed position and of the lens position, gravitational lensing allows to determine the mass of the lensing star with a precision of 1 percent, independent of any prior knowledge. Aims. Making use of the recently published Gaia Data Release 2 (Gaia DR2) we predict astrometric microlensing events by foreground stars of high proper motion passing by a background star in the coming years. Methods. We compile a list of ~148.000 high-proper-motion stars within Gaia DR2 with μtot\mu_{tot} > 150 mas/yr. We then search for background stars close to their paths and calculate the dates and separations of the closest approaches. Using color and absolute magnitude, we determine approximate masses of the lenses. Finally, we calculate the expected astrometric shifts and magnifications of the predicted events. Results . We detect two ongoing microlensing events by the high proper motion stars Luyten 143-23 and Ross 322 and predict closest separations of (108.5 ±\pm 1.4) mas in July 2018 and (125.3 ±\pm 3.4) mas in August 2018, respectively. The respective expected astrometric shifts are (1.74 ±\pm 0.12) mas and (0.76 ±\pm 0.06) mas. Furthermore, Luyten 143-23 will pass by another star in March 2021 with a closest separation of (280.1 ±\pm 1.1) mas, which results in an expected shift of (0.69 ±\pm 0.05) mas.Comment: Submitted to A&A, accepted June 14, 2018. 4 pages, 3 figures, 2 table

    The Effect of Use and Access on Citations

    Full text link
    It has been shown (S. Lawrence, 2001, Nature, 411, 521) that journal articles which have been posted without charge on the internet are more heavily cited than those which have not been. Using data from the NASA Astrophysics Data System (ads.harvard.edu) and from the ArXiv e-print archive at Cornell University (arXiv.org) we examine the causes of this effect.Comment: Accepted for publication in Information Processing & Management, special issue on scientometric

    Prediction of astrometric microlensing events from Gaia DR2 proper motions

    Full text link
    Context: Astrometric gravitational microlensing is an excellent tool to determine the mass of stellar objects. Using precise astrometric measurements of the lensed position of a background source in combination with accurate predictions of the positions of the lens and the unlensed source it is possible to determine the mass of the lens with an accuracy of a few percent. Aims: Making use of the recently published Gaia Data Release 2 (DR2) catalogue, we want to predict astrometric microlensing events caused by foreground stars with high proper motion passing a background source in the coming decades. Methods: We selected roughly 148 000 high-proper-motion stars from Gaia DR2 with μtot>150 mas/yr\mu_{tot} > 150\,\mathrm{mas/yr} as potential lenses. We then searched for background sources close to their paths. Using the astrometric parameters of Gaia DR2, we calculated the future positions of source and lens. With a nested-intervals algorithm we determined the date and separation of the closest approach. Using Gaia DR2 photometry we determined an approximate mass of the lens, which we used to calculate the expected microlensing effects. Results: We predict 3914 microlensing events caused by 2875 different lenses between 2010 and 2065, with expected shifts larger than 0.1 mas0.1\,\mathrm{mas} between the lensed and unlensed positions of the source. Of those, 513 events are expected to happen between 2014.5 - 2026.5 and might be measured by Gaia. For 127 events we also expect a magnification between 1 mmag1\,\mathrm{mmag} and 3 mag3\,\mathrm{mag}.Comment: 11 Pages, 14 figures, 2 tables, Accepted for publication in A&

    Stellar laboratories. IX. New Se V, Sr IV - VII, Te VI, and I VI oscillator strengths and the Se, Sr, Te, and I abundances in the hot white dwarfs G191-B2B and RE 0503-289

    Full text link
    To analyze spectra of hot stars, advanced non-local thermodynamic equilibrium (NLTE) model-atmosphere techniques are mandatory. Reliable atomic data is for the calculation of such model atmospheres. We aim to calculate new Sr IV - VII oscillator strengths to identify for the first time Sr spectral lines in hot white dwarf (WD) stars and to determine the photospheric Sr abundances. o measure the abundances of Se, Te, and I in hot WDs, we aim to compute new Se V, Te VI, and I VI oscillator strengths. To consider radiative and collisional bound-bound transitions of Se V, Sr IV - VII, Te VI, and I VI in our NLTE atmosphere models, we calculated oscillator strengths for these ions. We newly identified four Se V, 23 Sr V, 1 Te VI, and three I VI lines in the ultraviolet (UV) spectrum of RE0503-289. We measured a photospheric Sr abundance of 6.5 +3.8/-2.4 x 10**-4 (mass fraction, 9500 - 23800 times solar). We determined the abundances of Se (1.6 +0.9/-0.6 x 10**-3, 8000 - 20000), Te (2.5 +1.5/-0.9 x 10**-4, 11000 - 28000), and I (1.4 +0.8/-0.5 x 10**-5, 2700 - 6700). No Se, Sr, Te, and I line was found in the UV spectra of G191-B2B and we could determine only upper abundance limits of approximately 100 times solar. All identified Se V, Sr V, Te VI, and I VI lines in the UV spectrum of RE0503-289 were simultaneously well reproduced with our newly calculated oscillator strengths.Comment: 26 pages, 5 figure

    Stellar laboratories. VIII. New Zr IV - VII, Xe IV - V, and Xe VII oscillator strengths and the Al, Zr, and Xe abundances in the hot white dwarfs G191-B2B and RE0503-289

    Full text link
    For the spectral analysis of high-resolution and high-signal-to-noise spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. To search for Zr and Xe lines in the ultraviolet (UV) spectra of G191-B2B and RE0503-289, new Zr IV-VII, Xe IV-V, and Xe VIII oscillator strengths were calculated. This allows for the first time, determination of the Zr abundance in white dwarf (WD) stars and improvement of the Xe abundance determinations. We calculated Zr IV-VII, Xe IV-V, and Xe VIII oscillator strengths to consider radiative and collisional bound-bound transitions of Zr and Xe in our NLTE stellar-atmosphere models for the analysis of their lines exhibited in UV observations of the hot WDs G191-B2B and RE0503-289. We identified one new Zr IV, 14 new Zr V, and ten new Zr VI lines in the spectrum of RE0503-289. Zr was detected for the first time in a WD. We measured a Zr abundance of -3.5 +/- 0.2 (logarithmic mass fraction, approx. 11 500 times solar). We dentified five new Xe VI lines and determined a Xe abundance of -3.9 +/- 0.2 (approx. 7500 times solar). We determined a preliminary photospheric Al abundance of -4.3 +/- 0.2 (solar) in RE0503-289. In the spectra of G191-B2B, no Zr line was identified. The strongest Zr IV line (1598.948 A) in our model gave an upper limit of -5.6 +/- 0.3 which is about 100 times solar. No Xe line was identified in the UV spectrum of G191-B2B and we confirmed the previously determined upper limit of -6.8 +/- 0.3 (ten times solar). Precise measurements and calculations of atomic data are a prerequisite for advanced NLTE stellar-atmosphere modeling. Observed Zr IV - VI and Xe VI - VII line profiles in the UV spectrum of RE0503-289 were simultaneously well reproduced.Comment: 137 pages, 11 figure

    IVOA Document Standards Version 2.0

    Get PDF
    This document describes the types of official IVOA documents and the process by which documents are advanced from Working Drafts to formal Recommendations and from Notes to Endorsed Note
    • …
    corecore