17 research outputs found

    A layout algorithm for undirected compound graphs

    Get PDF
    Cataloged from PDF version of article.We present an algorithm for the layout of undirected compound graphs, relaxing restrictions of previously known algorithms in regards to topology and geometry. The algorithm is based on the traditional force-directed layout scheme with extensions to handle multi-level nesting, edges between nodes of arbitrary nesting levels, varying node sizes, and other possible application-specific constraints. Experimental results show that the execution time and quality of the produced drawings with respect to commonly accepted layout criteria are quite satisfactory. The algorithm has also been successfully implemented as part of a pathway integration and analysis toolkit named PATIKA, for drawing complicated biological pathways with compartmental constraints and arbitrary nesting relations to represent molecular complexes and various types of pathway abstractions. (C) 2008 Elsevier Inc. All rights reserved

    PATIKAweb: A Web interface for analyzing biological pathways through advanced querying and visualization

    Get PDF
    Summary: PATIKAweb provides a Web interface for retrieving and analyzing biological pathways in the PATIKA database, which contains data integrated from various prominent public pathway databases. It features a user-friendly interface, dynamic visualization and automated layout, advanced graph-theoretic queries for extracting biologically important phenomena, local persistence capability and exporting facilities to various pathway exchange formats. © The Author 2005. Published by Oxford University Press. All rights reserved

    Algorithms for effective querying of compound graph-based pathway databases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Graph-based pathway ontologies and databases are widely used to represent data about cellular processes. This representation makes it possible to programmatically integrate cellular networks and to investigate them using the well-understood concepts of graph theory in order to predict their structural and dynamic properties. An extension of this graph representation, namely hierarchically structured or compound graphs, in which a member of a biological network may recursively contain a sub-network of a somehow logically similar group of biological objects, provides many additional benefits for analysis of biological pathways, including reduction of complexity by decomposition into distinct components or modules. In this regard, it is essential to effectively query such integrated large compound networks to extract the sub-networks of interest with the help of efficient algorithms and software tools.</p> <p>Results</p> <p>Towards this goal, we developed a querying framework, along with a number of graph-theoretic algorithms from simple neighborhood queries to shortest paths to feedback loops, that is applicable to all sorts of graph-based pathway databases, from PPIs (protein-protein interactions) to metabolic and signaling pathways. The framework is unique in that it can account for compound or nested structures and ubiquitous entities present in the pathway data. In addition, the queries may be related to each other through "AND" and "OR" operators, and can be recursively organized into a tree, in which the result of one query might be a source and/or target for another, to form more complex queries. The algorithms were implemented within the querying component of a new version of the software tool P<smcaps>ATIKA</smcaps><it>web </it>(Pathway Analysis Tool for Integration and Knowledge Acquisition) and have proven useful for answering a number of biologically significant questions for large graph-based pathway databases.</p> <p>Conclusion</p> <p>The P<smcaps>ATIKA</smcaps> Project Web site is <url>http://www.patika.org</url>. P<smcaps>ATIKA</smcaps><it>web </it>version 2.1 is available at <url>http://web.patika.org</url>.</p

    EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial

    Get PDF
    More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University Münster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369

    A Compound Graph Layout Algorithm for Biological Pathways

    Get PDF
    We present a new compound graph layout algorithm based on traditional force-directed layout scheme with extensions for nesting and other application-specific constraints. The algorithm has been successfully implemented within Patika, a pathway analysis tool for drawing complicated biological pathways with compartmental constraints and arbitrary nesting relations to represent molecular complexes and pathway abstractions. Experimental results show that execution times and quality of the produced drawings with respect to commonly accepted layout criteria and pathway drawing conventions are quite satisfactory

    Effects of flavopiridol on critical regulation pathways of CD133high/CD44high lung cancer stem cells

    No full text
    PubMed ID: 27787370Background: Flavopiridol a semisynthetic flavone that inhibits cyclin-dependent kinases (CDKs) and has growth-inhibitory activity and induces a blockade of cell-cycle progression at G1-phase and apoptosis in numerous human tumor cell lines and is currently under investigation in phase II clinical trials. Cancer stem cells (CSCs) are comprised of subpopulation of cells in tumors that have been proposed to be responsible for recurrence and resistance to chemotherapy. The aim of the present study was to investigate the effects of flavopiridol in cancer stem cell cytoskeleton, cell adhesion, and epithelial to mesenchymal transition in CSCs. Methods:The cells were treated with flavopiridol to determine the inhibitory effect. Cell viability and proliferation were determined by using the WST-1 assay. Caspase activity and immunofluorescence analyses were performed for the evaluation of apoptosis, cell cytoskeleton, and epithelial-mesenchymal transition (EMT) markers. The effects of flavopiridol on the cell cycle were also evaluated. Flow cytometric analysis was used to detect the percentages of CSCs subpopulation. We analyzed the gene expression patterns to predict cell cycle and cell cytoskeleton in CSCs by RT-PCR. Results: Flavopiridol-induced cytotoxicity and apoptosis at the IC50 dose, resulting in a significant increase expression of caspases activity. Cell cycle analyses revealed that flavopiridol induces G1 phase cell cycle arrest. Flavopiridol significantly decreased the mRNA expressions of the genes that regulate the cell cytoskeleton and cell cycle components and cell motility in CSCs. Conclusion: Our results suggest that Flavopiridol has activity against lung CSCs and may be effective chemotherapeutic molecule for lung cancer treatment. © Copyright 2016 the Author(s). Published by Wolters Kluwer Health, Inc. All rights reserved
    corecore