280 research outputs found

    3D-Simulation of electromagnetic and temperature fields in the continuous induction heaters

    Get PDF
    The quasi-3-D model was developed for continuous induction heating of billets with arbitrary cross section. This computer model is intended for evaluation of electrical and thermal both stationary and non-stationary processes of stage and continuous working regime an induction heater with magnetic and non-magnetic loading with any of cross section shape. The combination of the most effective numerical methods for modeling induction heating process was used in this software: Finite Difference Method (FDM), Finite Element Method (FEM), Boundary Element Method (BEM), Integral Equation Method (IEM) and their combination

    Computer modeling of coupled electromagnetic, temperature and magnetohydrodynamic fields in the induction heating and melting devices

    Get PDF
    Computer modeling is necessary part of design new induction heating and melting devices [1]. One of the complicated technologies when it is necessary to simulate coupled electromagnetic, temperature and magnetohydrodynamic fields is heating and melting of titanium alloys in the alternating electromagnetic field. Thermal processing of titanium alloys in the inductor has some features that it is necessary to take into account on the designing of the advanced technology and equipment. Low thermal conductivity and high temperature losses at the surface result in maximum temperature inside of the billet that could under appropriate conditions exceed melting point. In this way it is possible to obtain liquid phase of titanium alloy inside of the billet and protect it from the contact with surrounding atmosphere. To get this it is necessary to choose the right regime of processing, frequency of current, power and thermal conditions. At the same time precise heating with very strong execution of the temperature profile during the heating time are essential for thermal processing of titanium alloys in this technology [2]. Mathematical model comprising computation of electromagnetic, temperature, MHD fields after getting melt zone and dynamic of its growth was developed. The calculation of the melting process has been carried out by the method “enthalpy-porosity” with application of models of turbulent currents k-ω SST in a non-static setting. Electromagnetic forces and heat sources have been defined by solving a harmonic task by the method of finite elements on a vector magnetic potential in the system “inductor – load” for each iteration of the hydrodynamic task. Experiments confirmed need in simulation of MHD fields to receive good coincidence. Using of the developed models for simulation of electromagnetic processing billets make it easy to develop and implement optimal heat processing systems for the crucibleless induction melting of titanium alloys.The calculations on the basis of the model and the analysis of physical processes with non-crucible melting of titanium alloys have also been carried out

    The seed laser system of the FERMI free-electron laser: design, performance and near future upgrades

    Get PDF
    Abstract An important trend in extreme ultraviolet and soft X-ray free-electron laser (FEL) development in recent years has been the use of seeding by an external laser, aimed to improve the coherence and stability of the generated pulses. The high-gain harmonic generation seeding technique was first implemented at FERMI and provided FEL radiation with high coherence as well as intensity and wavelength stability comparable to table-top ultrafast lasers. At FERMI, the seed laser has another very important function: it is the source of external laser pulses used in pump–probe experiments allowing one to achieve a record-low timing jitter. This paper describes the design, performance and operational modes of the FERMI seed laser in both single- and double-cascade schemes. In addition, the planned upgrade of the system to meet the challenges of the upgrade to echo-enabled harmonic generation mode is presented

    Chaotic Observer-based Synchronization Under Information Constraints

    Full text link
    Limit possibilities of observer-based synchronization systems under information constraints (limited information capacity of the coupling channel) are evaluated. We give theoretical analysis for multi-dimensional drive-response systems represented in the Lurie form (linear part plus nonlinearity depending only on measurable outputs). It is shown that the upper bound of the limit synchronization error (LSE) is proportional to the upper bound of the transmission error. As a consequence, the upper and lower bounds of LSE are proportional to the maximum rate of the coupling signal and inversely proportional to the information transmission rate (channel capacity). Optimality of the binary coding for coders with one-step memory is established. The results are applied to synchronization of two chaotic Chua systems coupled via a channel with limited capacity.Comment: 7 pages, 6 figures, 27 reference

    Controlled Synchronization of One Class of Nonlinear Systems under Information Constraints

    Full text link
    Output feedback controlled synchronization problems for a class of nonlinear unstable systems under information constraints imposed by limited capacity of the communication channel are analyzed. A binary time-varying coder-decoder scheme is described and a theoretical analysis for multi-dimensional master-slave systems represented in Lurie form (linear part plus nonlinearity depending only on measurable outputs) is provided. An output feedback control law is proposed based on the Passification Theorem. It is shown that the synchronization error exponentially tends to zero for sufficiantly high transmission rate (channel capacity). The results obtained for synchronization problem can be extended to tracking problems in a straightforward manner, if the reference signal is described by an {external} ({exogenious}) state space model. The results are applied to controlled synchronization of two chaotic Chua systems via a communication channel with limited capacity.Comment: 8 pages, 2 figure

    Two-colour generation in a chirped seeded Free-Electron Laser

    Full text link
    We present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments

    Frequency locking of modulated waves

    Full text link
    We consider the behavior of a modulated wave solution to an S1\mathbb{S}^1-equivariant autonomous system of differential equations under an external forcing of modulated wave type. The modulation frequency of the forcing is assumed to be close to the modulation frequency of the modulated wave solution, while the wave frequency of the forcing is supposed to be far from that of the modulated wave solution. We describe the domain in the three-dimensional control parameter space (of frequencies and amplitude of the forcing) where stable locking of the modulation frequencies of the forcing and the modulated wave solution occurs. Our system is a simplest case scenario for the behavior of self-pulsating lasers under the influence of external periodically modulated optical signals

    Towards jitter-free pump-probe measurements at seeded free electron laser facilities

    Get PDF
    X-ray free electron lasers (FEL) coupled with optical lasers have opened unprecedented opportunities for studying ultrafast dynamics in matter. The major challenge in pump-probe experiments using FEL and optical lasers is synchronizing the arrival time of the two pulses. Here we report a technique that benefits from the seeded-FEL scheme and uses the optical seed laser for nearly jitter-free pump-probe experiments. Timing jitter as small as 6 fs has been achieved and confirmed by measurements of FEL-induced transient reflectivity changes of Si3N4 using both collinear and non-collinear geometries. Planned improvements of the experimental set-up are expected to further reduce the timing jitter between the two pulses down to fs level
    • …
    corecore