11 research outputs found

    Control system by the technological electron linac KUT-20

    No full text
    The high-power technological electron linac KUT-20 was developed at the Science Research Complex “Accelerator” of NSC KIPT. The linac consists of two 1.2 m length accelerating structures with a variable geometry and an injector. The latter comprises a diode electron gun, a klystron type buncher and an accelerating cavity. With a RF supply power at accelerating structure entries of 11 MW and with a current at the accelerator exit of 1 A, the beam energy will be up to 20 MeV. An average beam power is planned to be 20 kW [1]. All systems of the accelerator are controlled by a computerised control system. The program & technical complex consist of PC equipped with fast ADC, control console, synchronization unit, microprocessor-operated complexes

    Control system in the technological electron linacs

    No full text
    In recent years in the Science Research Complex "Accelerator" in NSC KIPT the power current technological electron linacs are developed and put into operation. Their energy varies from 8 MeV to 30 MeV, the pulse current does not exceed 1A and the operating frequency is 150-300 Hz. The one- section linacs, KUT and LU-10, and two- section linac EPOS are used primarily for technological aims. The technological object zone irradiated by accelerated electrons is created with the magnet scanning syste

    Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial

    No full text
    Background: IMspire150 aimed to evaluate first-line combination treatment with BRAF plus MEK inhibitors and immune checkpoint therapy in BRAFV600 mutation-positive advanced or metastatic melanoma. Methods: IMspire150 was a randomised, double-blind, placebo-controlled phase 3 study done at 112 institutes in 20 countries. Patients with unresectable stage IIIc–IV, BRAFV600 mutation-positive melanoma were randomly assigned 1:1 to 28-day cycles of atezolizumab, vemurafenib, and cobimetinib (atezolizumab group) or atezolizumab placebo, vemurafenib, and cobimetinib (control group). In cycle 1, all patients received vemurafenib and cobimetinib only; atezolizumab placebo was added from cycle 2 onward. Randomisation was stratified by lactate dehydrogenase concentration and geographical region. Blinding for atezolizumab was achieved by means of an identical intravenous placebo, and blinding for vemurafenib was achieved by means of a placebo tablet. The primary outcome was investigator-assessed progression-free survival. This trial (ClinicalTrials.gov, NCT02908672) is ongoing but no longer recruiting patients. Findings: Between Jan 13, 2017, and April 26, 2018, 777 patients were screened and 514 were enrolled and randomly assigned to the atezolizumab group (n=256) or control group (n=258). At a median follow-up of 18·9 months (IQR 10·4–23·8), progression-free survival as assessed by the study investigator was significantly prolonged with atezolizumab versus control (15·1 vs 10·6 months; hazard ratio [HR] 0·78; 95% CI 0·63–0·97; p=0·025). Common treatment-related adverse events (>30%) in the atezolizumab and control groups were blood creatinine phosphokinase increased (51·3% vs 44·8%), diarrhoea (42·2% vs 46·6%), rash (40·9%, both groups), arthralgia (39·1% vs 28·1%), pyrexia (38·7% vs 26·0%), alanine aminotransferase increased (33·9% vs 22·8%), and lipase increased (32·2% vs 27·4%); 13% of patients in the atezolizumab group and 16% in the control group stopped all treatment because of adverse events. Interpretation: The addition of atezolizumab to targeted therapy with vemurafenib and cobimetinib was safe and tolerable and significantly increased progression-free survival in patients with BRAFV600 mutation-positive advanced melanoma. Funding: F Hoffmann–La Roche and Genentech. © 2020 Elsevier Lt

    50-Tin

    No full text

    Modern Approach to Medical Diagnostics - the Use of Separation Techniques in Microorganisms Detection

    No full text
    corecore