20 research outputs found

    MALT1 proteolytic activity suppresses autoimmunity in a T cell intrinsic manner

    Get PDF
    MALT1 is a central signaling component in innate and adaptive immunity by regulating NF-kappa B and other key signaling pathways in different cell types. Activities of MALT1 are mediated by its scaffold and protease functions. Because of its role in lymphocyte activation and proliferation, inhibition of MALT1 proteolytic activity is of high interest for therapeutic targeting in autoimmunity and certain lymphomas. However, recent studies showing that Mak1 protease-dead knock-in (Malt1-PD) mice suffer from autoimmune disease have somewhat tempered the initial enthusiasm. Although it has been proposed that an imbalance between immune suppressive regulatory T cells (Tregs) and activated effector CD4(+) T cells plays a key role in the autoimmune phenotype of Malt1-PD mice, the specific contribution of MALT1 proteolytic activity in T cells remains unclear. Using T cell-conditional Malt1 protease-dead knock-in (Malt1-PDT) mice, we here demonstrate that MALT1 has a T cell-intrinsic role in regulating the homeostasis and function of thymic and peripheral T cells. T cell-specific ablation of MALT1 proteolytic activity phenocopies mice in which MALT1 proteolytic activity has been genetically inactivated in all cell types. The Malt1-PDT mice have a reduced number of Tregs in the thymus and periphery, although the effect in the periphery is less pronounced compared to full-body Malt1-PD mice, indicating that also other cell types may promote Treg induction in a MALT1 protease-dependent manner. Despite the difference in peripheral Treg number, both T cell-specific and full-body Malt1-PD mice develop ataxia and multi-organ inflammation to a similar extent. Furthermore, reconstitution of the full-body Malt1-PD mice with T cell-specific expression of wild-type human MALT1 eliminated all signs of autoimmunity. Together, these findings establish an important T cell-intrinsic role of MALT1 proteolytic activity in the suppression of autoimmune responses

    Long-term MALT1 inhibition in adult mice without severe systemic autoimmunity

    Get PDF
    The protease MALT1 is a key regulator of NF-kappa B signaling and a novel therapeutic target in autoimmunity and cancer. Initial enthusiasm supported by preclinical results with MALT1 inhibitors was tempered by studies showing that germline MALT1 protease inactivation in mice results in reduced regulatory T cells and lethal multi-organ inflammation due to expansion of IFN-gamma-producing T cells. However, we show that long-term MALT1 inactivation, starting in adulthood, is not associated with severe systemic inflammation, despite reduced regulatory T cells. In contrast, IL-2-, TNF-, and IFN-gamma-producing CD4(+) T cells were strongly reduced. Limited formation of tertiary lymphoid structures was detectable in lungs and stomach, which did not affect overall health. Our data illustrate that MALT1 inhibition in prenatal or adult life has a different outcome and that long-term MALT1 inhibition in adulthood is not associated with severe side effects

    MALT1-deficient mice develop atopic-like dermatitis upon aging

    Get PDF
    MALT1 plays an important role in innate and adaptive immune signaling by acting as a scaffold protein that mediates NF-kappa B signaling. In addition, MALT1 is a cysteine protease that further fine tunes proinflammatory signaling by cleaving specific substrates. Deregulated MALT1 activity has been associated with immunodeficiency, autoimmunity, and cancer in mice and humans. Genetically engineered mice expressing catalytically inactive MALT1, still exerting its scaffold function, were previously shown to spontaneously develop autoimmunity due to a decrease in Tregs associated with increased effector T cell activation. In contrast, complete absence of MALT1 does not lead to autoimmunity, which has been explained by the impaired effector T cell activation due to the absence of MALT1-mediated signaling. However, here we report that MALT1-deficient mice develop atopic-like dermatitis upon aging, which is preceded by Th2 skewing, an increase in serum IgE, and a decrease in Treg frequency and surface expression of the Treg functionality marker CTLA-4

    Immune monitoring in melanoma and urothelial cancer patients treated with anti-PD-1 immunotherapy and SBRT discloses tumor specific immune signatures

    Get PDF
    Background: Blockade of the PD-1/PD-L1 pathway has revolutionized the oncology field in the last decade. However, the proportion of patients experiencing a durable response is still limited. In the current study, we performed an extensive immune monitoring in patients with stage III/IV melanoma and stage IV UC who received anti-PD-1 immunotherapy with SBRT. (2) Methods: In total 145 blood samples from 38 patients, collected at fixed time points before and during treatment, were phenotyped via high-parameter flow cytometry, luminex assay and UPLC-MS/MS. (3) Results: Baseline systemic immunity in melanoma and UC patients was different with a more prominent myeloid compartment and a higher neutrophil to lymphocyte ratio in UC. Proliferation (Ki67+) of CD8+ T-cells and of the PD-1+/PD-L1+ CD8+ subset at baseline correlated with progression free survival in melanoma. In contrast a higher frequency of PD-1/PD-L1 expressing non-proliferating (Ki67−) CD8+ and CD4+ T-cells before treatment was associated with worse outcome in melanoma. In UC, the expansion of Ki67+ CD8+ T-cells and of the PD-L1+ subset relative to tumor burden correlated with clinical outcome. (4) Conclusion: This study reveals a clearly different immune landscape in melanoma and UC at baseline, which may impact immunotherapy response. Signatures of proliferation in the CD8+ T-cell compartment prior to and early after anti-PD-1 initiation were positively correlated with clinical outcome in both cohorts. PD-1/PD-L1 expression on circulating immune cell subsets seems of clinical relevance in the melanoma cohort

    Functional characterization of the paracaspase MALT1 in T cells

    No full text

    Targeting MALT1 proteolytic activity in immunity, inflammation and disease: good or bad?

    No full text
    MALT1 is a signaling protein that plays a key role in immunity, inflammation, and lymphoid malignancies. For a long time MALT1 was believed to function as a scaffold protein, providing an assembly platform for other signaling proteins. This view changed dramatically when MALT1 was also found to have proteolytic activity and a capacity to fine-tune immune responses. Preclinical studies have fostered the belief that MALT1 is a promising therapeutic target in autoimmunity and B cell lymphomas. However, recent studies have shown that mice expressing catalytically-inactive MALT1 develop multi-organ inflammation and autoimmunity, and thus have tempered this initial enthusiasm. We discuss recent findings, highlighting the urgent need for a better mechanistic and functional understanding of MALT1 in host defense and disease

    Exposure levels of farmers and veterinarians to particulate matter and gases during operational tasks in pig-fattening houses

    No full text
    The main objective of the-study was to assess particulate matter (PM) exposure levels for both the farmer and the veterinarian during different operational tasks in pig-fattening houses, and to estimate their exposure levels on a daily working basis (time-weighted average (TWA)). The measured PM fractions were: inhalable and respirable PM, PM10, PM2.5 and PM1. The effects of pig age, pen floor type (conventional or low emission surface) and cleaning of the pens on the personal PM exposure were also investigated. Indoor concentrations of NH3, CH4, and CO2 were additionally measured during some operational tasks. The results showed that personal exposure levels can become extremely high during some operational tasks performed by the farmer or veterinarian. The highest concentration levels were observed during feed shovelling and blood sampling, the lowest during the weighing of the pigs. For the farmer, the estimated TWA exposure levels of inhalable and respirable PM were 6.0 and 0.29 mg m(-3), respectively. These exposure levels for the veterinarian were, respectively, 10.6 and 0.74 mg m(-3). The PM concentration levels were mainly determined by the performed operational tasks. There was no significant effect of pig age, pen floor type, nor cleaning of the pens on the personal exposure levels

    Normal lymphocyte homeostasis and function in MALT1 protease-resistant HOIL-1 knock-in mice

    No full text
    The uniqueness of MALT1 protease activity in controlling several aspects of immunity in humans has made it a very attractive therapeutic target for multiple autoimmune diseases and lymphoid malignancies. Despite several encouraging preclinical studies with MALT1 inhibitors, severe reduction in regulatory T cells and immune-mediated pathology seen in MALT1 protease-dead (MALT1-PD) mice and some, but not all, studies analysing the effect of prolonged pharmacological MALT1 protease inhibition, indicates the need to further unravel the mechanism of MALT1 protease function. Notably, the contribution of individual MALT1 substrates to the immune defects seen in MALT1-PD mice is still unclear. Previous in vitro studies indicated a role for MALT1-mediated cleavage of the E3 ubiquitin ligase HOIL-1 in the modulation of nuclear factor-kappa B (NF-kappa B) signalling and inflammatory gene expression in lymphocytes. Here, we addressed the immunological consequences of inhibition of HOIL-1 cleavage by generating and immunophenotyping MALT1 cleavage-resistant HOIL-1 knock-in (KI) mice. HOIL-1 KI mice appear healthy and have no overt phenotype. NF-kappa B activation in T or B cells, as well as IL-2 production and in vitro T-cell proliferation, is comparable between control and HOIL-1 KI cells. Inhibition of HOIL-1 cleavage in mice has no effect on thymic T-cell development and conventional T-cell homeostasis. Likewise, B-cell development and humoral immune responses are not affected. Together, these data exclude an important role of MALT1-mediated HOIL-1 cleavage in T- and B-cell development and function in mice
    corecore