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Simple Summary: Currently available biomarkers for response to checkpoint inhibitors are incom-
plete and predominantly focus on tumor tissue analysis e.g., tumor mutational burden, programmed
cell death-ligand 1 (PD-L1) expression. Biomarkers in peripheral blood would allow a more dynamic
monitoring and could offer a way for sequential adaptation of treatment strategy. We conducted
an in-depth analysis of baseline and on-treatment systemic immune features in a cohort of stage
III/IV melanoma and stage IV urothelial cancer (UC) patients treated with anti-programmed cell
death-1 (anti-PD-1) therapy combined with stereotactic body radiotherapy (SBRT) in a similar reg-
imen/schedule. Baseline immunity was clearly different between these two cohorts, indicating a
less active immune landscape in UC patients. This study also detected signatures of proliferation in
the CD8+ T-cell compartment pre-treatment and early after anti-PD-1 initiation that were positively
correlated with clinical outcome in both tumor types. In addition our data support the biological
relevance of PD-1/PD-L1 expression on circulating immune cell subsets, especially in melanoma.

Abstract: (1) Background: Blockade of the PD-1/PD-L1 pathway has revolutionized the oncology
field in the last decade. However, the proportion of patients experiencing a durable response is still
limited. In the current study, we performed an extensive immune monitoring in patients with stage
III/IV melanoma and stage IV UC who received anti-PD-1 immunotherapy with SBRT. (2) Methods:
In total 145 blood samples from 38 patients, collected at fixed time points before and during treatment,
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were phenotyped via high-parameter flow cytometry, luminex assay and UPLC-MS/MS. (3) Results:
Baseline systemic immunity in melanoma and UC patients was different with a more prominent
myeloid compartment and a higher neutrophil to lymphocyte ratio in UC. Proliferation (Ki67+) of
CD8+ T-cells and of the PD-1+/PD-L1+ CD8+ subset at baseline correlated with progression free
survival in melanoma. In contrast a higher frequency of PD-1/PD-L1 expressing non-proliferating
(Ki67−) CD8+ and CD4+ T-cells before treatment was associated with worse outcome in melanoma.
In UC, the expansion of Ki67+ CD8+ T-cells and of the PD-L1+ subset relative to tumor burden
correlated with clinical outcome. (4) Conclusion: This study reveals a clearly different immune
landscape in melanoma and UC at baseline, which may impact immunotherapy response. Signatures
of proliferation in the CD8+ T-cell compartment prior to and early after anti-PD-1 initiation were
positively correlated with clinical outcome in both cohorts. PD-1/PD-L1 expression on circulating
immune cell subsets seems of clinical relevance in the melanoma cohort.

Keywords: immunotherapy; anti-PD-1; melanoma; urothelial cancer; immune monitoring;
blood biomarkers

1. Introduction

New insights in immuno-oncology and the subsequently developed immunotherapies
have caused a major breakthrough in the oncology field in the last decade, creating the hope
of curing (metastatic) cancer. Despite the encouraging results, the proportion of patients
experiencing a durable response is still limited. In 2018 about 43% of cancer patients in
the United States were eligible for checkpoint inhibitor therapy compared to 1.5% in 2011,
while the estimated percentage of response only modestly increased from 0.14% to 12.4%
in the same time period [1]. Combination strategies are currently being tested in different
cancer types in an attempt to improve response rates [2,3], but the combination of cytotoxic
lymphocyte antigen 4 (CTLA-4) blockade and programmed cell death receptor 1 (PD-1)
blockade is well recognized to inevitably elicit higher toxicity and also implies a higher
cost. Both from the patient’s and healthcare budget’s perspective there is a need for new
translational insights that could help to optimize current immunotherapies.

Up to date predictive biomarkers have mainly been identified in tumor tissue. The
immunohistochemical expression of PD-L1 is currently one of the most widely used
biomarkers and, high expression has been correlated with response to PD-1/PD-L1 im-
munotherapy [4,5]. However, a systematic evaluation of 45 Food and Drug Administration
(FDA) approved trials involving 15 tumor types demonstrated that PD-L1 expression was
predictive in only 28.9% of cases [6]. High tumor mutational burden is also associated
with better response [7,8] and this finding led to FDA approval for checkpoint inhibition
in patients with microsatellite instability-high or mismatch repair-deficient solid tumors,
irrespective of cancer type [9,10]. Patients who respond to anti-PD-1 therapy exhibit a
tumor micro-environment that is enriched for interferon γ (IFNγ) and tumor infiltrating
lymphocytes (TILs), the so called ‘hot’ tumors [11–13].

Blood-based biomarkers have been far less reported and have not yet entered clinical
practice, although they could have the benefit of a dynamic monitoring during the treatment
course with the possibility to adapt immunotherapeutic strategies.

In the current study, we performed immune monitoring in patients with inopera-
ble stage III/IV melanoma and patients with stage IV UC who received anti-PD-1 im-
munotherapy combined with SBRT. The immune landscape before and during treatment
was compared between tumor types and the relation to clinical outcome was investigated.

2. Materials and Methods
2.1. Patient Samples

The biospecimens evaluated in this study were obtained from patients with melanoma
or UC who participated in two separate clinical trials (Figure 1a,b). A phase 2 trial included
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20 patients with unresectable stage III or stage IV metastatic melanoma who were treated
in the first line with anti-PD-1 (nivolumab) and SBRT (NCT02821182) [14]. The samples
from metastatic UC patients were collected during a randomized phase I trial with SBRT
administered either prior to the first anti-PD-1 cycle (arm A: SBRT prior to any treatment
with pembrolizumab, n = 9), or during anti-PD-1 treatment (arm B: SBRT prior to the third
pembrolizumab cycle, n = 9) [15]. Both trials were approved by the Ethics Committee of
Ghent University Hospital and are registered on Clinicaltrials.gov (resp. NCT02821182
and NCT02826564). At fixed time points through treatment, peripheral blood samples
(EDTA and serum tubes) were collected from melanoma (n = 85) and UC patients (n = 60)
respectively. Peripheral blood mononuclear cells (PBMCs) were isolated via Lymphoprep
centrifugation and stored in liquid nitrogen using standard methods.

Tumor burden was assessed using CT/MRI or PET-CT scan of the chest, abdomen and
pelvis at baseline, after the fourth cycle of anti-PD-1 and after every fifth cycle (melanoma)
or third cycle (UC) thereafter until the end of treatment. Tumor burden was defined as the
sum of the longest diameters for a maximum of five target lesions and up to two lesions
per organ. For lymph nodes the shortest axis was measured. Clinical responses were
determined based on Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 criteria.
Disease control was achieved in 12 melanoma patients (complete response, CR (n = 3);
partial response; PR (n = 6) and stable disease, SD (n = 3)) while 8 patients showed
progressive disease (non-responder). In UC, no objective responders were observed in
arm A, while of 4 patients in arm B achieved a complete or partial response (CR: n = 1;
PR: n = 3).

2.2. Flow Cytometry

Cryopreserved PBMCs were thawed and washed in RPMI 1640 medium supple-
mented with Glutamax (2.05 mM), 10% FCS and penicillin (100 U/mL)-streptomycin
(100 µg/mL). Cells were stained with monoclonal antibodies labeled with fluorochromes.
A complete list of the used antibodies can be found in Table S3. In a first step, 2.5 × 106 cells
were stained with FcR blocking reagent for blocking of unspecific binding of antibodies
(130-059-901, Miltenyi, Madrid, Spain) and a mixture of Fixable Viability dye eFluor 506
(65-0866-14, eBioscience, San Diego, CA, USA) and antibodies against surface markers in
PBS and BD Horizon Brilliant Stain Buffer (563794, BD Biosciences, San Jose, CA, USA),
incubated for 30 min at 4 ◦C and washed. In a second step, cells were fixed and perme-
abilized with Foxp3 Transcription Factor Staining Buffer Set (00-5523-00, eBioscience, San
Diego, CA, USA), and subsequently stained intracellularly for 30 min at RT. Labeled cell
suspensions were acquired on a BD FACSymphony flowcytometer (BD Biosciences, San
Jose, CA, USA) and data was analyzed with FlowJo 10.6.2 software (Ashland, OR, USA).
Gating strategies are depicted in Figure S1.

The frequency of neutrophils and lymphocytes in white blood cells was determined
for all of the samples using automated blood cell counting equipment (Sysmex XE-5000,
Norderstedt, Germany) during routine lab evaluations.

2.3. High Dimensional Data Analysis of Flow Cytometry Data
2.3.1. t-SNE

Live CD8+ T cells were gated in FlowJo v10.6.2 and exported as separate fcs files
for melanoma and UC. Populations before and during treatment were randomly down-
sampled and subsequently concatenated into 1 file (total events melanoma: 1.234.633 events;
total events urothelial cancer arm A: 689.057 events; total events urothelial cancer arm B:
979.821 events). Next, concatenated samples were analyzed via t-distributed stochastic
neighborhood embedding (t-SNE) in FlowJo v10.6.2. Opt-SNE was applied as learning
configuration, with perplexity set to 30 and iterations to 1000. The colors in the heatmap
represent the measured means intensity value of Ki67 in a given cluster.
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Figure 1. Overview of the clinical trial treatment strategy and PD-L1 and TIL quantification. (a) Schematic of design of 
phase 2 clinical trial in unresectable stage III and stage IV melanoma receiving a combination of anti-PD-1 and SBRT. (b) 
Schematic of design of randomized phase 1 trial combining anti-PD-1 with either sequential (Arm A) or concomitant SBRT 
(Arm B) in metastatic UC. Red arrows indicate time of blood collection. (c) Boxplots with tumoral PD-L1 expression in 
non-responders and responders (left) and Kaplan-Meier estimate of PFS stratified according to tumoral PD-L1 expression 
(right) in melanoma and (d) in UC. Whiskers of boxplots extend to the minimum and maximum data point, with the 
horizontal line indicating the median. p value calculated using two-sided Mann-Whitney U test (left) and log-rank test 
(right). (e) TIL quantification in non-responders and responders in melanoma and (f) in UC. TILs were evaluated semi 
quantitatively: 1+, sporadic TILs; 2+, moderate number of TILs; 3+, abundant occurrence of TILs. p value calculated using 
Fisher’s exact test. Pre, pre-treatment; Wk, week; Gy, gray; SBRT, stereotactic body radiotherapy; CT, computed tomogra-
phy; NR, non-responder; R, responder; PFS, progression free survival; NS, not significant; TIL, tumor infiltrating lympho-
cytes. 
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Figure 1. Overview of the clinical trial treatment strategy and PD-L1 and TIL quantification. (a) Schematic of design of
phase 2 clinical trial in unresectable stage III and stage IV melanoma receiving a combination of anti-PD-1 and SBRT. (b)
Schematic of design of randomized phase 1 trial combining anti-PD-1 with either sequential (Arm A) or concomitant SBRT
(Arm B) in metastatic UC. Red arrows indicate time of blood collection. (c) Boxplots with tumoral PD-L1 expression in
non-responders and responders (left) and Kaplan-Meier estimate of PFS stratified according to tumoral PD-L1 expression
(right) in melanoma and (d) in UC. Whiskers of boxplots extend to the minimum and maximum data point, with the
horizontal line indicating the median. p value calculated using two-sided Mann-Whitney U test (left) and log-rank test
(right). (e) TIL quantification in non-responders and responders in melanoma and (f) in UC. TILs were evaluated semi
quantitatively: 1+, sporadic TILs; 2+, moderate number of TILs; 3+, abundant occurrence of TILs. p value calculated using
Fisher’s exact test. Pre, pre-treatment; Wk, week; Gy, gray; SBRT, stereotactic body radiotherapy; CT, computed tomography;
NR, non-responder; R, responder; PFS, progression free survival; NS, not significant; TIL, tumor infiltrating lymphocytes.

2.3.2. FlowSOM

The melanoma and UC datasets were analyzed separately, following the same pipeline.
The fcs files were first cleaned by manual gating in FlowJo, after which the data was
imported in R. An aggregate was generated with approximately 3 million cells, with
an equal number of cells subsampled at random without repetition from each sample
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(melanoma: 85 samples with 35,295 cells each, urothelial cancer arm B: 36 samples with
83,334 cells each). This aggregate was then used to train a FlowSOM model with a 15
by 15 grid (225 clusters) and 30 metaclusters. Thirteen markers were taken along for the
clustering: CD3, CD4, CD8, CD25, CD19, CD56, HLA-DR, CD123, CD33, CD11b, CD14,
CD16 and FoxP3.

Once the model was built, all samples were fully mapped onto the model, resulting
in a cluster and metacluster assignment for each cell. From this mapping, the cluster
and metacluster abundances per sample were extracted. Additionally, for 6 markers
(CTLA-4, Ki67, IDO, PD-1, PD-L1 and HLA-DR), a positivity threshold was determined
by manual gating. We used these thresholds to determine the abundance of each possible
subpopulation in each (meta-) cluster. A subpopulation was defined by being either
positive, negative or neutral (both positive and negative cells included) for each of the
markers, resulting in 729 potential combinations per (meta-) cluster. As many of these
combinations would not occur in reality, these subpopulations were then filtered, only
keeping those where at least 5 samples had at least 30 cells. This resulted in a total of
76,039 features describing the immune profile of melanoma samples and 70,648 features
for the urothelial cancer samples.

2.4. Cytokine Measurement

Magnetic luminex assay (R&D systems, Minneapolis, MN, USA) was performed on
cryopreserved serum samples according to manufacturer’s instructions using a customized
panel, including CXCL9, CXCL10, MICA, MICB, ULBP-1, ULBP-2/5/6, ULBP-3, ULBP-4
and s100B. Serum concentrations were measured on a Bio-Plex 200 Array Reader (Bio-Rad,
Hercules, CA, USA).

2.5. UPLC-MS/MS

Tryptophan (Trp) and its metabolite kynurenine (Kyn) were quantified according to
previously published methods [16,17], with slight modifications. Cryopreserved serum
samples (50 µL) were extracted using 50 µL acetonitrile containing Trp-D5 (50 µM, CDN
Isotopes, Pointe-Claire, QC, Canada) as an internal standard. The samples were centrifuged
(8 min, 11,800 rpm, 4 ◦C) and the supernatants (50 µL) were added to deionized water
(600 µL). Fifteen µL of this mixture was injected in an ultra-high-performance liquid
chromatography system coupled to tandem mass spectrometry detector (UPLC-MS/MS,
Acquity TQ-S Detector, Waters, Milford, MA, USA) equipped with a HSS C18 column.
Ions of each analyzed compound were detected in a positive ion mode using multiple
reaction monitoring.

2.6. Scoring of PD-L1 and Tumor Infiltrating Cells

Formalin-fixed, paraffin-embedded (FFPE) tumor samples were collected at time
of surgical resection before start of systemic treatment in melanoma and UC patients.
4 µm-thick FFPE tissue sections were subjected to heat-induced antigen retrieval and
incubated with primary monoclonal antibodies against PD-L1: clone SP263 (Ventana
Medical Systems Inc., Tucson, AZ, USA) for melanoma samples and clone 22C3 (Agilent
Technologies, Santa Clara, CA, USA) for UC samples. Samples were visualized with 3,3′-
diaminobenzidine (DAB) chromogen and hematoxylin counterstain and cover-slipped for
review. Scoring of PD-L1 was conducted by 2 pathologists blinded to patient characteristics.
In melanoma sections, the percentage of tumor cells with membranous PD-L1 staining was
scored (0–100%). In UC sections, the percentage of tumor cells and any tumor infiltrating
mononuclear inflammatory cells with membranous PD-L1 staining was scored (0–100%).

The abundance of intraepithelial TILs was determined on H&E stained sections. This
morphological assessment of TILs within tumor nests was evaluated semi quantitatively:
1+, sporadic TILs; 2+, moderate number of TILs; 3+, abundant occurrence of TILs. For
dichotomization, the TILs score was categorized into ‘low’ (1+ or 2+) and ‘high’ (3+). TILs
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were assessed on 19 melanoma patients as the only available specimens for the 20th patient
was a cytological sample.

2.7. Statistics

To compare longitudinal immunologic effects, p-values for each measured immune
feature were calculated using a Wilcoxon matched-pairs signed-ranks test. Associations
between immune features and treatment response were identified by Mann-Whitney U
tests comparing the frequencies of phenotypes between responders and non-responders.
Progression free survival (PFS) was defined as the time from inclusion to disease progres-
sion, death or the last follow-up, whichever occurred first. PFS curves were estimated
using the Kaplan-Meier method by dichotomizing immune phenotypes of interest through
their median value. Survival curves between patients with high (above the median) and
low (below the median) frequencies of the immune feature of interest were compared using
a Log-Rank test. Cox regression models have been used to perform univariate analysis.
Correlations between continuous variables were determined by Spearman’s r coefficient.
A chi square test was employed to test for association between two categorical variables.
Fold change in proliferation was calculated by dividing the frequency of Ki67+ T-cells in
on-treatment samples to the frequency of Ki67+ T-cells at pre-treatment. Statistical analyses
were performed using IBM SPSS v26 and all tests were performed two-sided; p < 0.05
was considered to be statistically significant. Graphs were plotted with Graphpad Prism
(GraphPad software Inc., San Diego, CA, USA). For FlowSOM analysis, a Wilcoxon Rank
Sum test was executed in R to compare responders and non-responders, after which the
features were ranked by p-value.

3. Results
3.1. Overview of Patient Cohorts

Blood samples (n = 145) of 20 melanoma patients and 18 UC patients treated with
anti-PD-1 therapy combined with SBRT were included (NCT02821182 and NCT02826564).
The design of the clinical trials and time points of blood sample collection is schemat-
ically presented in Figure 1a,b. The clinical results of these trials have been reported
elsewhere [14,15]. Detailed patient characteristics are described in Tables S1 and S2.

The median age in the melanoma cohort was 60.5 years (34.0–80.0 years) and 68.0 years
(50.0–84.0 years) in the UC cohort (Mann-Whitney U test, p = 0.055). Age was not correlated
with clinical outcome in the melanoma cohort (Mann-Whitney U test, p = 0.473). In the
UC cohort, median age was higher in responders (75.5 years, (71.0–84.0 years)) compared
to non-responders (61.0 years (50.0–79.0 years), Mann-Whitney U test, p = 0.018). The
median tumor burden was lower in melanoma patients compared to UC patients (23.5 mm
(10.0–100.0 mm) versus 45.8 mm (12.10–106.90 mm), Mann-Whitney U test, p = 0.033).
Median baseline tumor burden was not different in responders versus non-responders in
the melanoma cohort. Responders in the UC cohort tended to have lower median baseline
tumor burden compared to non-responders (arm B: 29.45 mm (12.10–46.90 mm) versus
60.50 mm (44.70–75.00 mm), Mann-Whitney U test, p = 0.032, for arm A+B p = 0.101). Prior
systemic treatment had been administered in 2/20 melanoma patients (anti-CTLA-4 and
BRAF-targeted therapy). In the UC cohort, 13/18 patients had been treated with one or
more platinum-based chemotherapies prior to enrollment in the study.

Tumoral PD-L1 expression was not significantly related to response or PFS in melanoma
or UC patients (Figure 1c,d). No difference in baseline TILs was found between responders
and non-responders (Figure 1e,f).

3.2. Differences in Baseline Immunity between Melanoma and UC Cohort

Significant differences in the baseline immune landscape were observed between the
melanoma and UC cohort (Figure 2a,b).
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Figure 2. Baseline systemic immunity differs between melanoma and urothelial cancer. (a) Frequency of neutrophils, lym-
phocytes and neutrophil-to-lymphocyte ratio in melanoma and UC. Reference values are depicted in black. (b) Frequency 
of immune cell populations of innate and adaptive immune system. Error bar denotes ± SD. (c) (left) Ratio of serum con-
centrations of kynurenine (Kyn) on tryptophan (Trp), presented values are Kyn/Trp x 100. (right) Serum concentrations of 
T-cell activating chemokines CXCL9 and CXCL10 and concentrations of ligands for NK cell activing receptor NKG2D: 
MICA, MICB, ULBP-2, ULBP-3 and ULBP-4. Concentrations out of the range of detection could not be depicted. p value 
calculated using two-sided Mann-Whitney U test. * p < 0.05, ** p < 0.01, *** p < 0.001. WBC, white blood cells; MDSC, 
myeloid-derived suppressor cells; mDC, myeloid dendritic cells; pDC, plasmacytoid dendritic cells; Tregs, regulatory T-
cells; ND, not detectable. 
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lymphocytes and neutrophil-to-lymphocyte ratio in melanoma and UC. Reference values are depicted in black. (b) Frequency
of immune cell populations of innate and adaptive immune system. Error bar denotes ± SD. (c) (left) Ratio of serum
concentrations of kynurenine (Kyn) on tryptophan (Trp), presented values are Kyn/Trp x 100. (right) Serum concentrations
of T-cell activating chemokines CXCL9 and CXCL10 and concentrations of ligands for NK cell activing receptor NKG2D:
MICA, MICB, ULBP-2, ULBP-3 and ULBP-4. Concentrations out of the range of detection could not be depicted. p value
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myeloid-derived suppressor cells; mDC, myeloid dendritic cells; pDC, plasmacytoid dendritic cells; Tregs, regulatory T-cells;
ND, not detectable.
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The neutrophil-to-lymphocyte ratio (NLR) was higher in UC compared to melanoma.
Melanoma patients had a clearly higher lymphocyte frequency and more γδ T-cells and
proliferating (Ki67 expressing) B-cells compared to UC patients. There was no significant
difference in the frequency of CD4+ and CD8+ T-cells between the two cohorts, except for
the frequency of regulatory T-cells (Tregs, as defined by CD25+ Foxp3+ CD4+ cells [18])
which was lower in melanoma patients.

In the UC cohort, the frequency of neutrophils, classical CD14+ monocytes, plasma-
cytoid dendritic cells (pDCs) and myeloid-derived suppressor cells (MDSCs) was higher
compared to the melanoma cohort. Notably, the frequency of CD16+ monocytes correlated
negatively with tumor burden in UC patients (Spearman’s CC: −0.627, p = 0.005). No
significant differences were observed in the total NK cell population but the percentage of
Ki67+ CD56bright NK was lower in the UC cohort.

The baseline concentration of IFNγ-inducible chemokine CXCL10 was higher in
melanoma, whereas higher serum concentrations of MICA and MICB-both soluble NKG2D
ligands-were detected in UC (Figure 2c). No differences in baseline kynurenine to trypto-
phan ratio (Kyn/Trp) were observed.

Altogether these data indicate a more favorable baseline immune landscape in the
melanoma cohort compared to UC patients.

3.3. Early Systemic Immune Changes after Anti-PD-1 Treatment Initiation

To study early dynamic changes in systemic immunity upon anti-PD-1 initiation,
blood samples after 1 cycle in the melanoma cohort (collected at week 1) and after 2 cycles
in the UC cohort arm B (collected at week 5) were examined.

While a significant increase in the Ki67 expressing CD8+ T-cell population was ob-
served, the increases in Ki67+ CD8+ T-cell subsets co-expressing the checkpoint molecules
PD-L1 or CTLA-4 were even more pronounced (Figure 3a,b). In both tumor types, Ki67+

CD8+ T-cells seemed to peak after 1 or 2 cycles of anti-PD-1 therapy (Figure 3c,d). Interest-
ingly, in the melanoma cohort the percentage of Ki67+ CD8+ T-cells, Ki67+ PD-L1+ CD8+

T-cells and especially Ki67+ PD-1+ CD8+ T-cells at baseline and for the former two also
at week 1 were positively correlated with PFS (Figure 3e). In UC, PFS correlated with the
increase of Ki67+ CD8+ T-cells to tumor burden and with the increase of Ki67+ PD-L1+

CD8+ T-cells to tumor burden (Figure 3f). In melanoma the increase of Ki67+(PD-L1+) CD8+

T-cells to tumor burden did not correlate with PFS.
In a subset of 7 melanoma patients with an additional blood sample collected during

anti-PD-1 treatment at a median time interval of 6 months (range: 3–16 months) after
start of treatment. Ki67+ CD8+ T-cells co-expressing PD-L1 or CTLA-4 had returned to
baseline levels.

Global high-dimensional mapping of flow cytometry data via the t-SNE algorithm
provided more insights into this proliferating subset of CD8+ T-lymphocytes. t-SNE analy-
sis revealed a highly Ki67-positive CD8+ T-cell cluster, already present before treatment
in melanoma and UC (Figure 3g,h). Compared to the total CD8+ T-cell population this
Ki67+ CD8+ T-cell cluster demonstrated enriched expression of the T-cell activation marker
HLA-DR and the immune checkpoint molecule IDO1 (Figure 3i,j). A variable expression for
CTLA-4, PD-1 and its ligand PD-L1 was present in this cluster, with cells either expressing
or lacking these markers. To assess the dynamics of this cluster during therapy, we manu-
ally gated on this cluster in the individual t-SNE map of each patient on each time point.
Independent of response to immunotherapy, the frequency of Ki67+ CD8+ T-cells increased
at week 1 and this was maintained at week 6 in melanoma patients (Figure 3k). In UC
patients, the increase in Ki67 expressing CD8+ T-cells tended to be higher in responders
(Figure 3l).

In addition, a significant increase in serum CXCL10 and Kyn/Trp was observed after
1 cycle of anti-PD-1 in the melanoma cohort (Figure 3m). The magnitude of these increases
was not significantly different between responders and non-responders. The increases in
CXCL10 and Kyn/Trp were not significant in the UC cohort (Figure 3n).
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Figure 3. Early upregulation of proliferating CD8+ T-cells in response to anti-PD-1. (a) Contour plots representing Ki67 
expression in CD8+ T-cell subsets at pre-treatment (Pre) and after 1 cycle of anti-PD-1 (Week 1) in 12 independent mela-
noma patients. (b) Contour plots representing Ki67 expression in CD8+ T-cell subsets at pre-treatment and after 2 cycles 
of anti-PD-1 (Week 5) in 9 independent UC patients (arm B). (c) Lineplot with fold induction of Ki67 expression in CD8+ 

Figure 3. Early upregulation of proliferating CD8+ T-cells in response to anti-PD-1. (a) Contour plots representing Ki67
expression in CD8+ T-cell subsets at pre-treatment (Pre) and after 1 cycle of anti-PD-1 (Week 1) in 12 independent melanoma
patients. (b) Contour plots representing Ki67 expression in CD8+ T-cell subsets at pre-treatment and after 2 cycles of anti-
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PD-1 (Week 5) in 9 independent UC patients (arm B). (c) Lineplot with fold induction of Ki67 expression in CD8+ T-cell
subsets at indicated times in melanoma (n = 20) and (d) in UC (arm B, n = 9). Data shown are relative to pre-treatment
samples. Error bar denotes mean ± SEM. p value calculated using two-sided Wilcoxon matched-pairs test. * p < 0.05,
** p < 0.01. (e) Spearman correlation of PFS to Ki67 expression in the total CD8+ T-cell population (left), PD-L1+ CD8+ T-cells
(middle) and PD-1+ CD8+ T-cells (right) at pre-treatment (up) and after 1 cycle of anti-PD-1 (Week 1, down) in melanoma.
(f) Spearman correlation of PFS to the ratio of the fold change of Ki67 increase on CD8+ T-cells (week 5 on pre-treatment) to
tumor burden (up) and to the ratio of the fold change of Ki67 increase on PD-L1+ CD8+ T-cells (week 5 on pre-treatment) to
tumor burden (down) in UC. (g) t-distributed stochastic neighbor embedding (t-SNE) map of CD8+ T-cells overlaid with the
expression level of Ki67 as a heat map in melanoma and (h) in UC. (i) Phenotypic description of the Ki67+ cluster in the
CD8+ T-cell t-SNE map of melanoma and (j) of UC. Histograms depict expression profile of functional markers in the Ki67+

CD8+ cluster (orange) compared to total CD8+ T-cell population (grey). (k) Lineplot with fold induction of Ki67+ cells in
CD8+ T-cell t-SNE map of non-responders (NR) and responders (R) to anti-PD-1 at indicated times in melanoma and (l)
in UC. Data shown are relative to pre-treatment samples. Error bar denotes ± SEM. p value calculated using two-sided
Wilcoxon matched-pairs test. * p < 0.05, ** p < 0.01. (m) Lineplots with ratio of concentrations of serum Kyn and Trp (×100)
and concentration of CXCL10 at indicated times in melanoma and (n) in UC. p value calculated using two-sided Wilcoxon
matched-pairs test. ** p < 0.01. Wk, week; NS, not significant, TB, tumor burden.

To conclude, via a manual gating approach and an unsupervised clustering approach
we report marked invigoration of CD8+ T-cell subsets that have enriched expression of
the activation marker HLA-DR and variably express immune checkpoint molecules. upon
anti-PD-1 treatment initiation These proliferating CD8+ T-cell populations peaked after 1
to 2 cycles of anti-PD-1 in both melanoma and UC patients. Altogether these data point
to the possible clinical significance of baseline Ki67+ CD8+ T-cells and mainly the PD-1
expressing subset in melanoma. In UC the early increase of Ki67+ CD8+ T-cells and of the
PD-L1 expressing subset relative to tumor burden seems to be crucial for PFS.

3.4. Systemic Immune Changes after SBRT

To explore the impact of SBRT, the dynamics of immune cell frequencies before
and after SBRT were investigated (resp. blood samples collected at week 1 and 2 in
melanoma and week 5 and 6 in UC arm B). As described above, proliferation of the T-cell
compartment peaked at the first on-treatment blood sample, which was collected before
SBRT administration. No additional increases in (Ki67 expressing) T-cell subsets were
detected after SBRT in melanoma nor in UC. In melanoma, modest increases in the serum
concentration of CXCL10 and Kyn/Trp were observed, while the frequency of B-cells
decreased (Figure S2a), but these changes were not significantly different to the observed
trend before SBRT. In the UC cohort, these changes could not be confirmed (Figure S2b).

3.5. FlowSOM Analysis to Discover Immune Signatures Correlating with Clinical Outcome

In order to detect discrete differences in the systemic immune response between
responders and non-responders, we applied the algorithm FlowSOM to the flow cytometry
dataset. FlowSOM, a powerful clustering-based technique to explore cellular heterogeneity,
generates a Minimum Spanning Tree with each node existing of a group of phenotypically
related cells [19]. The 85 fcs files of melanoma patients were concatenated into one single
FlowSOM tree for all individuals (Figure 4a). The frequency of cells assigned to a specific
metacluster or cluster were compared between responders and non-responders before
and during treatment. No differences between responders and non-responders in the
percentage of cells assigned to a specific metacluster or cluster were noticed. We further
explored differences between melanoma responders and non-responders by investigating
the extent of (co-) expression of 6 functional markers (CTLA-4, Ki67, IDO, PD-1, PD-L1
and HLA-DR) in the FlowSOM clusters. Features distinguishing responders and non-
responders were predominantly found in the T-cell compartment.
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responders (NR) and responders (R). p value calculated using two-sided Mann-Whitney U test. ** p < 0.01. (right) Kaplan-
Maier estimate of PFS stratified according to low (<0.2221%) or high (>0.2221%) expression of PD-L1+ PD-1+ CTLA-4− Ki67− 
IDO− HLA-DR- in metacluster 1. p value calculated using log-rank test. (c,d) (top left) Melanoma FlowSOM tree depicting 
differences in expression of the indicated signature in clusters between non-responders and responders at pre-treatment. 
−log10(p values) are plotted on FlowSOM tree showing the significantly over- or underrepresented clusters in non-re-
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value calculated using log-rank test. (b–d). Whiskers of boxplots extend to the minimum and maximum data point, with 
the horizontal line indicating the median. 

  

Figure 4. Pre-treatment expression of PD-1 and PD-L1 in non-proliferating CD8+ T-cells correlates with non-response to
anti-PD-1 in melanoma. (a) FlowSOM tree of concatenated flow cytometry data of PBMCs from 20 melanoma patients
(85 samples). (b) (left) Boxplot of the pre-treatment expression of indicated signature in metacluster 1 (CD8+ T-cells) in
non-responders (NR) and responders (R). p value calculated using two-sided Mann-Whitney U test. ** p < 0.01. (right)
Kaplan-Maier estimate of PFS stratified according to low (<0.2221%) or high (>0.2221%) expression of PD-L1+ PD-1+ CTLA-
4− Ki67− IDO− HLA-DR− in metacluster 1. p value calculated using log-rank test. (c,d) (top left) Melanoma FlowSOM
tree depicting differences in expression of the indicated signature in clusters between non-responders and responders
at pre-treatment. −log10(p values) are plotted on FlowSOM tree showing the significantly over- or underrepresented
clusters in non-responders versus responders. (top right) Contour plot (n = 10) representing manual gating strategy on
total CD8+ T-cell population to confirm FlowSOM signature. (below left) Boxplots with expression of manually gated
signature in non-responders (NR) and responders (R), p value in boxplots calculated using two-sided Mann-Whitney U
test. * 0.01 < p < 0.05. (below right) Kaplan-Maier estimate of PFS stratified according to low or high expression of indicated
signature. p value calculated using log-rank test. (b–d). Whiskers of boxplots extend to the minimum and maximum data
point, with the horizontal line indicating the median.
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We first focused on features in (meta-) clusters corresponding to CD8+ T-cells. Flow-
SOM assigned CD8+ T-cells to 1 single metacluster (metacluster 1). Within this metacluster,
the baseline expression of PD-L1+ PD-1+ CTLA-4− Ki67− IDO− HLA-DR− was higher in
non-responding patients (Figure 4b). The frequency of CD8+ T-cells with this phenotype
was associated with worse PFS (Figure 4b, Log-Rank analysis, p = 0.018). Further, multiple
CD8+ T-cell clusters showed differential expression of Ki67− PD-1+ and PD-1− PD-L1−

between responders and non-responders (Figure 4c,d). We manually gated on Ki67− PD-1+

CD8+ T-cells, which confirmed higher frequencies in non-responders. In contrast, manual
gating on PD-1− PD-L1− showed decreased expression in non-responders compared to
responders. These signatures were inversely correlated with each other (Spearman’s CC:
−0.965, p < 0.001) and were both associated with PFS (Figure 4c,d).

In the CD4+ T-cell compartment, 51 signatures were detected to be differentially
expressed pre-treatment between responders and non-responders in melanoma (cluster 204,
cluster 205, cluster 206 and cluster 220). Notably, all signatures involved PD-L1 expression
and were highly interrelated (Figure 5a,b). The majority of signatures distinguishing
responders from non-responders were expressed in cluster 205, which is a HLA-DR positive
CD25− FoxP3− CD4+ T-cell population (Figure 5c). Non-responders had an increased
expression of PD-L1 in this cluster compared to responders (p = 0.0041, Figure 5d). PD-L1+

CD4+ cells in cluster 205 of non-responders were negative for expression of CTLA-4 or
Ki67 and were HLA-DRdim (Figure 5e). This phenotype of CD4+ T-cells could be confirmed
via a manual gating approach. Non-responders did not only have a higher frequency of
this subset of CD4+ T-cells at baseline but also during treatment (Figure 5f).

Since FlowSOM assigned Tregs to the same metacluster as other CD4+ T-cell pop-
ulations in melanoma, Treg clusters were analyzed separately by defining them as one
metacluster. Co-expression patterns in this Treg metacluster (including cluster 207, cluster
208, cluster 221, cluster 222 and cluster 223) were investigated. Non-responders were found
to have less Tregs with phenotype HLA-DR+ PD-L1− IDO− during treatment (Figure S3a).
This was confirmed via a manual gating approach (Figure S3b).

A similar strategy was applied to the UC cohort, concatenating 35 fcs files of the 9 arm
B patients into one single FlowSOM tree (Figure 6a). Other than in the melanoma cohort,
analysis in the UC cohort predominantly revealed alterations in (meta-) clusters corre-
sponding to monocytes. Cluster 215 containing non-classical CD14− CD16+ monocytes
was overrepresented in responders before and during treatment (Figure 6b). The frequency
of cells in metacluster 28, which includes cluster 215, was different between responders
and non-responders at week 5 and week 12 (Figure 6c). Cluster 202, cluster 216, cluster
217 and cluster 218 contain CD14+ CD16+ monocytes and were overrepresented in respon-
ders at week 12 (metacluster 23, Figure 6d). Baseline metacluster 23 and metacluster 28
were both inversely correlated with baseline tumor burden (resp. Spearman’s CC: −0.817,
p = 0.007 and Spearman’s CC: −0.833, p = 0.005), and also inversely correlated with the
serum Kyn/Trp ratio (resp. Spearman’s CC: −0.817, p = 0.007 and Spearman’s CC: −0.900,
p = 0.001). Furthermore, 3 additional clusters with classical CD14+ CD16− monocytes
were overrepresented in responders (cluster 208 before treatment p = 0.0159, cluster 210
and cluster 224 at week 12, both p = 0.0159), although not reflected on metacluster level
(Figure 6b). In addition enhanced expression of proliferation marker Ki67 in cluster 123
(corresponding to CD56bright NK cells) at week 12 was found to be associated with lower
Kyn/Trp ratio and better response (Figure 6e,f).
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Figure 5. Pre-treatment expression of PD-L1 in non-proliferating CD4+ T-cells correlate with non-response to anti-PD-1 in 
melanoma patients. (a) Melanoma FlowSOM tree representing differences in PD-L1 expression in clusters between non-
responders and responders at pre-treatment. –log10(p-values) are plotted on tree showing the significantly over- or un-
derrepresented clusters in non-responders versus responders. (b) Correlation matrix of pre-treatment signatures (co-) ex-
pressing PD-L1 in FlowSOM clusters corresponding to CD4+ T-cells. Colored boxes represent Spearman’s correlation with 

Figure 5. Pre-treatment expression of PD-L1 in non-proliferating CD4+ T-cells correlate with non-response to anti-PD-1
in melanoma patients. (a) Melanoma FlowSOM tree representing differences in PD-L1 expression in clusters between
non-responders and responders at pre-treatment. –log10(p-values) are plotted on tree showing the significantly over- or
underrepresented clusters in non-responders versus responders. (b) Correlation matrix of pre-treatment signatures (co-)
expressing PD-L1 in FlowSOM clusters corresponding to CD4+ T-cells. Colored boxes represent Spearman’s correlation with
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a significance of p < 0.05. Red to blue represents correlation coefficients ranging from 1 to -1, respectively. (c) Representative
flow plots of 10 independent melanoma patients with the phenotype of indicated clusters. (d) Histogram and contour
plots with PD-L1 expression in cluster 205 of non-responders (NR, n = 5) versus cluster 205 of responders (R, n = 5) versus
the total CD4+ T-cell population (n = 10). (e) (top) Boxplots with the frequency of expression of PD-L1 combined with
CTLA-4, Ki67 or HLA-DR in cluster 205 in non-responders (NR) and responders (R). (bottom) Contour plots with indicated
signatures in cluster 205 in non-responders (NR, n = 5) and responders (R, n = 5). (f) (top) Contour plots representing
manual gating strategy of PD-L1+ CTLA-4− Ki67− HLA-DR+ CD4+ T-cells. (bottom) Boxplots with frequency of manually
gated signature in CD4+ T-cell population at indicated times. (e,f). Whiskers of boxplots extend to the minimum and
maximum data point, with the horizontal line indicating the median. p value calculated using two-sided Mann-Whitney U
test. ** p < 0.01, *** p < 0.001. Wk, week.

Altogether, the results obtained by FlowSOM analysis highlight distinct signatures
in melanoma and UC that correlate with clinical outcome. In melanoma, these signatures
were predominantly found in the lymphoid compartment and mainly involved different
baseline expression patterns of PD-1 and/or PD-L1: the expression of PD-L1/PD-1 in non-
proliferating (Ki67−) CD8+ and CD4+ T cells was associated with worse clinical outcome. In
the UC cohort signatures with a higher frequency of (non-) classical monocytes were found
to be correlated with response, but also had a strong inverse correlation with tumor burden.

3.6. Link between Blood and Tumor Micro-Environment

We explored possible associations between the systemic immune landscape and the
TILs score/PD-L1 expression in the tumor. In melanoma, patients with a high TILs score
(score 3 versus score 1 and 2) had a significantly lower frequency of circulating PD-L1+

CD4+ T-cells and PD-L1+ PD-1+ CD4+ T-cells (Figure S4a). This could not be confirmed in
the UC cohort (Figure S4b). No correlation between PD-L1 staining in the tumor micro-
environment and systemic immune features could be observed for both cohorts.

1 
 

 

Figure 6. Cont.
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Figure 6. Increased frequency of monocytes associates to response in urothelial cancer. (a) FlowSOM tree of concatenated
flow cytometry data of PBMCs from 9 UC patients (arm B, 36 samples). (b) UC FlowSOM trees depicting differences in the
percentage of cells assigned to clusters between non-responders and responders at pre-treatment, week 5, week 6 and week
12 of anti-PD-1 treatment. −log10(p values) are plotted on trees showing the significantly over- or underrepresented clusters
in non-responders versus responders. Colors of cluster numbers correspond with immune cell populations in a. (c) Boxplots
with percentages of metacluster 28 corresponding to CD14− CD16+ monocytes in non-responders (NR) and responders
(R) at indicated times. (d) Boxplots with percentages of metacluster 23 corresponding to CD14+ CD16+ monocytes in
non-responders (NR) and responders (R) at indicated times. (e) Boxplots with percentages of Ki67 expression in cluster
123 corresponding to CD56bright NK cells in non-responders (NR) and responders (R) at indicated times. (f) Lineplots with
the ratio of concentrations of serum Kyn and Trp (×100) in non-responders (NR) and responders (R) at indicated times.
(c–e) Whiskers of boxplots extend to the minimum and maximum data point, with the horizontal line indicating the median.
p value calculated using two-sided Mann-Whitney U test. * 0.01 < p < 0.05.

4. Discussion

In this study we conducted an in-depth analysis of baseline and on-treatment systemic
immune features in a cohort of melanoma and UC patients treated with anti-PD-1 therapy
combined with SBRT in a similar design.

Baseline immunity (before start of treatment) was clearly different between these two
cohorts, supporting a less active immune landscape in UC compared to melanoma. NLR
was significantly higher in the UC cohort. Variations in baseline NLR have been reported
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between tumor types and increased pre-treatment NLR has been linked to worse outcome
in patients treated with immunotherapy [20]. The NLR is considered as a marker reflecting
the balance between inflammation state (pro-tumoral) and adaptive immune surveillance
and response (anti-tumoral). UC patients also had higher frequencies of classical monocytes
and immunosuppressive MDSCs. In the melanoma cohort, cells of the lymphoid lineage
were higher as reflected by higher frequencies of lymphocytes in total, γδ T-cells and
proliferating B-cells. In line with this, higher serum concentrations of CXCL10, an IFNγ-
inducible chemokine involved in T-cell recruitment to the tumor [21,22], were measured
in melanoma compared to UC. In contrast, serum concentrations of soluble MICA and
MICB were higher in UC patients. MICA and MICB are ligands for the activating receptor
NKG2D and their soluble form has been implicated in the perturbation of effector immune
cell function and the stimulation of MDSCs [23].

The observation of a distinct baseline systemic immunity in the 2 cohorts may play a
prominent role in the different response rates to immunotherapy. The objective response
rate (ORR) of anti-PD-1 monotherapy reported in inoperable stage III/IV melanoma is
around 42–45%, while ORR reported in chemotherapy-refractory metastatic urothelial
cancer is considerably lower (15–28.6%) [24–27]. Currently, our understanding of intrinsic
factors such as tumor type and burden, patient age and sex, and extrinsic factors such
as prior systemic treatments that shape the immune system is far from complete. Tumor
mutational burden has been linked to response to immunotherapy and varies across
tumor types, with melanoma constituting the largest neoantigen repertoire [8,28]. Both
patients’ age and sex were evidenced to impact the driver mutations that arise during
tumorigenesis, with younger and female patients accumulating driver mutations that are
less readily presented by MHC molecules [29]. In contrast, in a meta-analysis including
more than 10,000 patients treated with immunotherapy for several types of advanced
cancers, a higher relative reduction of the risk of death was observed in male compared to
female patients [30]. Since a higher tumor mutational burden has been reported in male
patients [31,32] and this is a predictor of benefit from immune checkpoint inhibitors [33,34],
this could be a possible explanation for improved overall survival rates in male patients.
Aging has been reported to accompany certain immune changes such as a decrease in the
number and functionality of naïve CD8+ T-cells [35,36] and reduced phagocytic function
and HLA-II expression of DCs [37], indicating elder individuals have an impaired T-cell
response to cross-presented antigens (immunosenescence). Nevertheless, a large multi-
centric study reported that older melanoma patients had better response to anti-PD-1
treatment compared to younger patients [38]. In our study median age in the UC cohort
was higher in responders compared to non-responders (75.5 versus 61.0 years). Age was
not correlated with NLR in the melanoma nor the UC cohort, which is consistent with other
reports [39,40]. The depicted reference values of neutrophils and lymphocytes (Figure 2a)
further support baseline differences per tumor type independent of sex and age.

Importantly, the majority of UC patients received prior chemotherapy and one third
even received two or three treatment lines before trial inclusion, which may have al-
tered the immune landscape considerably. The impact of these immunological alterations
on immunotherapy response is unclear. A number of recent studies hypothesize that
chemotherapy may sensitize tumors for immunotherapy whereas others postulate that
chemotherapy negatively impacts myelopoiesis, induces inflammation and increased ex-
pression of immunosuppressive molecules such as IDO and PD-L1 [41–45].

The observations in this study demonstrate important differences in baseline im-
munity between and within tumor types and these may be important determinants for
immunotherapy response. Better insights into the various intrinsic and extrinsic factors
that shape this baseline immunity may be relevant in order to gain further insights how to
optimize immunotherapy response across various cancer types.

Pathological response predictive for clinical outcome to immunotherapy has been
reported early after initiation of anti-PD-1 in melanoma [34,46] and the accumulation of
CD8+ T-cells expressing inhibitory receptors (exhausted T-cells, Tex) was detected in the
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peripheral blood within 3 weeks after immunotherapy initiation [46–48]. In the current
study, we observed increased proliferation of CD8+ T-cells in the blood as early as 7 days
after anti-PD-1 treatment initiation in melanoma patients. Similar increases in Ki67+ CD8+

T-cells were detected after one or two treatment cycles in UC patients. Proliferating CD8+

T-cells were positive for the activation marker HLA-DR and for IDO and had variable
expression of checkpoint molecules such as PD-1, PD-L1 and CTLA-4.These findings are
in line with previous data in NSCLC and melanoma, where anti-PD-1 was reported to
revitalize an already existing T-cell response consisting of primed (tumor-specific) CD8+

T-cells that had become exhausted due to chronic antigen stimulation [46–48]. It has been
hypothesized by Huang et al. that reinvigoration of Tex occurs in the peripheral blood
prior to migrating into the tumor as supported by a single peak of PD-1-blockade-induced
immune reinvigoration despite on-going treatment [46,47]. In line with this, proliferating
CD8+ T-cells in the current study peaked early in the PBMC compartment and declined
upon further anti-PD-1 administration.

No clear immune boost effect could be observed after SBRT in these 2 small patient
cohorts except from a moderate increase in CXCL10 in the melanoma cohort.

In melanoma, proliferation of the total CD8+ T-cell population, PD-L1+ CD8+ T-cells
and PD-1+ CD8+ T-cells at baseline were correlated with prolonged PFS. The former two
populations were also correlated with PFS after one cycle of anti-PD-1 (PD-1 expression
was not measurable beyond baseline presumably due to anti-PD-1 treatment preventing the
in vitro added PD-1 antibodies from binding their epitopes). In contrast, FlowSOM anal-
ysis supports a negative impact of baseline PD-1/PD-L1 expression in non-proliferating
(Ki67−) T-helper (CD25− Foxp3− CD4+) and cytotoxic T-cells (CD8+). A negative prog-
nostic effect of PD-L1 expressing CD8+ T-cells in melanoma has been reported in the
context of anti-CTLA-4 immunotherapy and also in early stage melanoma without sys-
temic treatment [49,50]. FlowSOM analysis also revealed PD-1/PD-L1 co-expression on
circulating CD8+ T-cells. This has been described before, and PD-1 and PD-L1 were shown
to bind in cis with high affinity in in vitro lentivirally transduced cell cultures, including
Jurkat Cells, evidencing this interaction can also occur on T-cells in vivo [51]. These in
cis PD-1/PD-L1 interactions on CD8+ T-cells might reflect functional inactivation, which
would explain the enhanced co-expression of PD-1 and PD-L1 on CD8+ T-cells in non-
responders observed in this study. In addition PD-L1/PD-1 co-expressing CD4+ T-cells in
blood tend to be related to a lower TILs score at the level of tumor micro-environment in
our melanoma cohort. In UC patients, the expansion of proliferating (Ki67+) CD8+ T-cells
and its PD-L1+ subset relative to tumor burden was correlated with longer PFS.

These data support that the size of the proliferating cytotoxic T-cell compartment
and its expansion is closely involved in the immunotherapy response. As UC patients
have lower baseline lymphocyte counts compared to melanoma, the actual magnitude
of the expansion might be important for response initiation. In addition, in arm B of the
UC cohort tumor burden was significantly lower in responders versus non-responders,
which may explain why the ratio is of importance in the UC cohort. Huang et al. have
reported that the magnitude of the reinvigoration of Tex as a ratio to pre-treatment tumor
burden was correlated with clinical outcome in immunotherapy in melanoma [47]. The
fact that tumor burden in arm B of the UC cohort was significantly lower in responders
compared to non-responders, may be a reason why this ratio was related to response
only in the UC cohort in this study. Our data are also supported by data from the neo-
adjuvant setting where a single injection of pembrolizumab in resectable stage III or IV
melanoma patients resulted in the expansion of Ki67+ PD-1+ CTLA-4+ CD8+ T-cells in the
peripheral blood of patients 7 days post injection. This Ki67+ CD8+ T-cell population was
demonstrated to be present in the blood before start of the treatment and supports the
reinvigorating properties of anti-PD-1 therapy on a preexisting immune response [52]. In
the study of Huang et al. the CD8+ T-cell population responding to anti-PD-1 treatment
was characterized as CD45lo CD27hi, containing cells with high expression of CTLA-4, 2B4
and PD-1. Moreover this population was Eomeshi and T-betlo, which is consistent with
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an exhausted T-cell phenotype [47]. Although the proliferating CD8+ T-cells in our study
had higher expression of the activation marker HLA-DR compared to the non-proliferating
CD8+ T-cells, they also had higher IDO expression and variable expression of PD-1 and
PD-L1. The expression of these immune checkpoint molecules has been shown to be a
possible physiological negative feedback mechanism upon immune stimulation [45,53].
These data may explain conflicting results on the prognostic value of checkpoint molecules
expressed on immune cells.

These data also underline the relevance of analyzing PD-1/PD-L1 expression on
circulating T-cell subsets. Whereas PD-1 is predominantly expressed on lymphocytes,
its ligand PD-L1 has been detected on a variety of cells in the tumor microenvironment
including conventional DCs, macrophages, MDSCs, and extracellular vesicles [54–57].
Blockade of PD-L1 signaling on immune cells (especially DCs and macrophages) was
demonstrated to be critical for an optimal anti-tumor immune response, as opposed
to/in addition to cancer-cell intrinsic PD-L1 expression [55,56]. This may explain the
inconsistent observations on the role of tumor PD-L1 expression in predicting response
to PD-1 blockade, and why its absence does not preclude response [58]. Although PD-L1
expression in tumor tissue has been related to response to PD-1 blockade, a systematic
evaluation of 45 FDA-approved trials involving 15 tumor types demonstrated that PD-L1
expression was predictive in only 28.9% of cases [6]. PD-L1 expression on circulating T-cells
is less studied. Pre-treatment PD-L1 expression on peripheral CD8+ and CD4+ T-cells was
associated with worse outcome in melanoma patients receiving CTLA-4 blockade [49]. We
previously reported that the frequency of circulating PD-L1+ CD8+ T-cells in early-stage
melanoma was an independent prognostic marker. High frequencies of PD-L1+ CD8+ T-
cells were associated with other immune suppressive features including increased Kyn/Trp
ratio (implying increased IDO1 activity) and increased MDSCs and Tregs [50]. Together
with the observation in the current study that the level of PD-L1 on circulating CD4+

and CD8+ T-cells is of importance for the outcome of anti-PD-1 treatment, these findings
suggest that PD-L1 expression in the lymphocyte compartment might be an important
blood biomarker in cancer patients receiving PD-1 blockade.

FlowSom analysis in the UC cohort revealed higher frequencies of monocytes in
responding UC patients. High frequencies of non-classical CD14− CD16+ monocytes and
intermediate CD14+ CD16+ monocytes were closely correlated with lower tumor burden
at baseline. The percentage of proliferating CD56bright NK cells was also found to be
increased in responding UC patients at week 12. Intratumoral CD56bright NK cells have
been previously reported to be associated with improved survival outcomes in localized
stage bladder cancer [59]. At week 12 responding UC patients also had lower levels of
Kyn/Trp, suggesting decreased activity of IDO1, an enzyme that is implicated in acquired
immune tolerance [57,60].

The immunotherapy field in oncology is rapidly changing with superior long-term
results of combination immunotherapy in melanoma and renal cell carcinoma [61] and
very promising results in melanoma in the neoadjuvant setting that seem to be extendable
to other tumor types [62,63]. Moreover the number of clinical trials with new immune
targets is increasing e.g., TIM-3, LAG-3, GITR, TIGIT. Immune monitoring of peripheral
blood is attractive for dynamic monitoring of the immune system, which ideally could
lead to a strategy of treatment adaptation in order to optimize response. In the current
study blood signatures before and during treatment with anti-PD-1 therapy combined with
SBRT were investigated. Whether the observed signatures related to clinical outcome are
applicable in daily practice and can be extrapolated to other immunotherapy regimens such
as the combination of anti-PD-1 with anti-CTLA4 needs to be further investigated. Distinct
cellular mechanisms of anti-PD-1 or anti-CTLA-4 monotherapy compared to combination
therapy have been detected in the peripheral blood [64,65] and anti-CTLA4 monotherapy
has been shown to induce some immune landscape changes in blood that are considered
negative for response on subsequent anti-PD-1 treatment [52]. These immune monitoring
data can provide relevant insights in how to optimize immunotherapy strategy.
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5. Conclusions

Despite the limitations of small sample sizes, use of cryopreserved samples and multi-
ple testing in the FlowSom analysis, this study clearly reveals a different baseline immune
landscape in melanoma and UC which may be of importance for immunotherapy response.
The intrinsic (host and/or tumor related) and extrinsic factors (e.g., prior treatments) that
shape this immune landscape are currently incompletely understood. Better insights in
these determinants may be important to gain new insights for optimizing immunotherapy
outcome. This study also reports signatures of proliferation in the CD8+ T-cell compartment
prior to and early after anti-PD-1 initiation that were positively correlated with clinical
outcome. Moreover our data support the clinical relevance of PD-1/PD-L1 expression on
circulating immune cell subsets in melanoma.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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dance of TILs is linked with blood PD-L1 and PD-1 expression on CD4+ T-cells, Table S1: Patient
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