26 research outputs found

    The change of cellular membranes on apoptosis: fluorescence detection

    No full text
    The strong plasma membrane asymmetry existing in living cells is lost on apoptosis, and it is commonly detected with the probes interacting strongly and specifically with phosphatidylserine (PS). This phospholipid becomes exposed to the cell surface, and the labeled annexin V is used for its detection. The requirement for early and Ca2+-independent detection of apoptosis in the formats of spectroscopy of cell suspensions, flow cytometry, microarray technology and confocal or two-photon microscopy stimulated efforts for the development of new methods. Since the PS exposure must produce integrated changes of electrostatic potential and hydration in the outer leaflet of cell membrane, its detection can be provided by direct response of smart fluorescence probes. This review is focused on basic mechanisms underlying the loss of membrane asymmetry during apoptosis and the principles lying in the background of new methods that demonstrate essential advantages over the annexin V-binding assay. The convenient wavelength-ratiometric technique based on fluorescent probe F2N12S is described in detail. It incorporates spontaneously into outer leaflet of cell membrane and the color change of its fluorescent emission associated with apoptosis can be easily detected. This article is part of a Special Issue entitled β€œApoptosis: Four Decades Later”

    Modern views on the structure and dynamics of biological membranes

    No full text
    Essential changes have been recently observed in views on the functioning, structural and dynamic properties of biological membranes. The previous results on hierarchical cluster-type structure of membranes and role of protein and lipid components are reconsidered. An established fact of dramatic difference in lipid composition between external and internal monolayers of plasma membranes is important for understanding membrane phenomena. In particular, there exist the differences between monolayers in surface charge and potential, ion binding, interaction with protein molecules, etc. A glycolipid component of outer monolayer and interaction of inner monolayer with cytoskeleton allow the membrane by expanding the asymmetry to attain its important functional properties. All that requires more critical approach to numerous data obtained with simplified biomembrane analogs – lipid and protein-lipid bilayer structures. In the attempts to describe and model the properties of cellular membranes there is a timely necessity to shift from two-dimensionality (which reduces the analysis to membrane plane only) to more realistic three-dimensional models.ΠžΡΡ‚Π°Π½Π½Ρ–ΠΌ часом відбулися істотні Π·ΠΌΡ–Π½ΠΈ Ρƒ поглядах Π½Π° функціонування Ρ– структурно-Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½Ρ– властивості Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½. ΠŸΠ΅Ρ€Π΅Π³Π»ΡΠ½ΡƒΡ‚ΠΎ Π΄Π°Π½Ρ– Ρ‰ΠΎΠ΄ΠΎ Ρ–Ρ”Ρ€Π°Ρ€Ρ…Ρ–Ρ‡Π½ΠΎΡ— кластСрної Π±ΡƒΠ΄ΠΎΠ²ΠΈ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Ρ– Ρ€ΠΎΠ»Ρ– Π±Ρ–Π»ΠΊΠΎΠ²ΠΈΡ… Ρ– Π»Ρ–ΠΏΡ–Π΄Π½ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ–Π². ВстановлСно Ρ„Π°ΠΊΡ‚ Π΄Ρ€Π°ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎΡ— Ρ€Ρ–Π·Π½ΠΈΡ†Ρ– Π»Ρ–ΠΏΡ–Π΄Π½ΠΎΠ³ΠΎ складу ΠΌΡ–ΠΆ Π·ΠΎΠ²Π½Ρ–ΡˆΠ½Ρ–ΠΌ Ρ– Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½Ρ–ΠΌ ΠΌΠΎΠ½ΠΎΡˆΠ°Ρ€Π°ΠΌΠΈ ΠΏΠ»Π°Π·ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½, який ΠΌΠ°Ρ” Π²Π°ΠΆΠ»ΠΈΠ²Π΅ значСння для розуміння ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΈΡ… процСсів. Π—ΠΎΠΊΡ€Π΅ΠΌΠ°, Ρ–ΡΠ½ΡƒΡŽΡ‚ΡŒ відмінності ΠΌΡ–ΠΆ ΠΌΠΎΠ½ΠΎΡˆΠ°Ρ€Π°ΠΌΠΈ Ρƒ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΎΠΌΡƒ заряді Ρ– ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–Π°Π»Ρ–, зв’язуванні Ρ–ΠΎΠ½Ρ–Π², Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— Π· ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ Π±Ρ–Π»ΠΊΡ–Π² Ρ‚ΠΎΡ‰ΠΎ. Π“Π»Ρ–ΠΊΠΎΠ»Ρ–ΠΏΡ–Π΄Π½ΠΈΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ Π·ΠΎΠ²Π½Ρ–ΡˆΠ½ΡŒΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΎΡˆΠ°Ρ€Ρƒ Ρ– взаємодія Π· цитоскСлСтом Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½ΡŒΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΎΡˆΠ°Ρ€Ρƒ Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ΡŒ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ– Ρ‡Π΅Ρ€Π΅Π· поглиблСння асимСтрії Π½Π°Π±ΡƒΡ‚ΠΈ Π²Π°ΠΆΠ»ΠΈΠ²ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΡ… властивостСй. НСобхідний Π±Ρ–Π»ΡŒΡˆ ΠΊΡ€ΠΈΡ‚ΠΈΡ‡Π½ΠΈΠΉ ΠΏΡ–Π΄Ρ…Ρ–Π΄ Π΄ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π², ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡ… Π·Ρ– спрощСними Π°Π½Π°Π»ΠΎΠ³Π°ΠΌΠΈ Π±Ρ–ΠΎΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ – Π»Ρ–ΠΏΡ–Π΄Π½ΠΈΠΌΠΈ Ρ– Π±Ρ–Π»ΠΊΠΎΠ²ΠΎ-Π»Ρ–ΠΏΡ–Π΄Π½ΠΈΠΌΠΈ Π±Ρ–ΡˆΠ°Ρ€ΠΎΠ²ΠΈΠΌΠΈ структурами. Π£ спробах описання Ρ– модСлювання властивостСй ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π½ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ існує ΠΏΠΎΡ‚Ρ€Π΅Π±Π° Π²Ρ–Π΄Ρ…ΠΎΠ΄Ρƒ Π²Ρ–Π΄ двовимірності (Ρ‰ΠΎ Π·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π°Π½Π°Π»Ρ–Π· лишС Π² ΠΏΠ»ΠΎΡ‰ΠΈΠ½Ρƒ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ΠΈ) Ρ– ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Ρƒ Π΄ΠΎ Π±Ρ–Π»ΡŒΡˆ рСалістичних Ρ‚Ρ€ΠΈΠ²ΠΈΠΌΡ–Ρ€Π½ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ.Π’ послСднСС врСмя ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΈ сущСствСнныС измСнСния Π²ΠΎ взглядах Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ структурно-динамичСскиС свойства биологичСских ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½. ΠŸΠ΅Ρ€Π΅ΡΠΌΠΎΡ‚Ρ€Π΅Π½Ρ‹ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ ΠΈΠ΅Ρ€Π°Ρ€Ρ…ΠΈΡ‡Π½ΠΎΠΌ кластСрном строСнии ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΠΈ Ρ€ΠΎΠ»ΠΈ Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… ΠΈ Π»ΠΈΠΏΠΈΠ΄Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ². УстановлСн Ρ„Π°ΠΊΡ‚ драматичСских Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ Π»ΠΈΠΏΠΈΠ΄Π½ΠΎΠ³ΠΎ состава ΠΌΠ΅ΠΆΠ΄Ρƒ Π½Π°Ρ€ΡƒΠΆΠ½Ρ‹ΠΌ ΠΈ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΌ монослоями плазматичСских ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΉ большоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ для понимания ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Ρ… процСссов. Π’ частности, ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ различия ΠΌΠ΅ΠΆΠ΄Ρƒ монослоями Π² повСрхностном зарядС ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π΅, связывании ΠΈΠΎΠ½ΠΎΠ², взаимодСйствии с Π±Π΅Π»ΠΊΠΎΠ²Ρ‹ΠΌΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ ΠΈ Ρ‚. Π΄. Π“Π»ΠΈΠΊΠΎΠ»ΠΈΠΏΠΈΠ΄Π½Ρ‹ΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ внСшнСго монослоя ΠΈ взаимодСйствиС с цитоскСлСтом Π²ΠΎ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΌ монослоС ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π΅ Π·Π° счСт углублСния асиммСтрии приобрСсти Π²Π°ΠΆΠ½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ свойства. НСобходим Π±ΠΎΠ»Π΅Π΅ ΠΊΡ€ΠΈΡ‚ΠΈΡ‡Π½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ многочислСнным Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌ с ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½Π½Ρ‹ΠΌΠΈ Π°Π½Π°Π»ΠΎΠ³Π°ΠΌΠΈ Π±ΠΈΠΎΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ – Π»ΠΈΠΏΠΈΠ΄Π½Ρ‹ΠΌΠΈ ΠΈ Π±Π΅Π»ΠΊΠΎΠ²ΠΎ-Π»ΠΈΠΏΠΈΠ΄Π½Ρ‹ΠΌΠΈ бислойными структурами. Π’ ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠ°Ρ… описания ΠΈ модСлирования свойств ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ сущСствуСт Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Π°Ρ ΠΏΠΎΡ‚Ρ€Π΅Π±Π½ΠΎΡΡ‚ΡŒ ΠΎΡ‚Ρ…ΠΎΠ΄Π° ΠΎΡ‚ двухмСрности (Ρ‡Ρ‚ΠΎ сводит Π°Π½Π°Π»ΠΈΠ· лишь Π² ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹) ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° ΠΊ Π±ΠΎΠ»Π΅Π΅ рСалистичным Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½Ρ‹ΠΌ модСлям

    Spectroscopic Studies of New Fluorescent Nanomaterial Composed of Silver Atoms and Organic Dye

    Get PDF
    The novel fluorescent nanostructures are synthesized in a simple one-step process by UV light illumination of silver salt in a mixture with organic dye Thioflavin T. The latter serves both as a sensitizer in photoreaction and as molecular support. The most stable composite structures are obtained in 2-propanol. They are characterized by absorption spectra that are quite different from that of the dye and by strong excitation and emission bands with the maxima at 340 nm and 450 nm correspondingly. We suggest that this photoreaction product consists of two silver atoms and two dye molecules. We believe that this new fluorescent nanoscale material will find many applications in biosensing and bioimaging technologies. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3526

    Fluorescent Few-Atom Clusters of Silver Formed in Organic Solvents on Polymeric Supports

    Get PDF
    Few-atom silver clusters are fluorophores with a set of attractive properties including sub-nanometer size, high quantum yield and large Stokes shift. Sharing high photostability with semiconductor quantum dots but being of much smaller size, lacking blinking and with expected lack of toxicity, they are especially attractive for biological imaging, down to single molecules. No less promising are their applications in chemical sensing and biosensing as well as for molecular optic and electronic devices on a single molecular level. We demonstrate that it is not a unique property of water that can provide the formation and stability of silver clusters. They can be produced on photoreduction in different organic solvents using the same polymeric template. Unique photophysical properties of these clusters share both similarities and differences to that of organic dyes. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3512

    Clustering Monte Carlo simulations of the hierarchical protein folding on a simple lattice model

    No full text
    A role of specific collective motions and clustering behavior in protein folding was investigated using simple 2D lattice models. Two model peptides, which have the sequences of hierarchical and non-hierarchical design, were studied comparatively. Simulations were performed using three methods: Metropolis Monte Carlo with the local move set, Metropolis Monte Carlo with unspecific rigid rotations, and the Clustering Monte Carlo (CMC) algorithm that has been recently described by the authors. The latter was developed with particular aim to provide a realistic description of cluster dynamics. We present convincing evidence that the folding pathways and kinetics of hierarchically folding sequence are not adequately described in conventional MC simulations. In this case the account for cluster dynamics provided by CMC algorithm reveals important features of folding of hierarchically organized sequences. Our data suggest that the methods, which enable specific cluster motions, should be used for realistic description of hierarchical folding.ДослідТСно Ρ€ΠΎΠ»ΡŒ спСцифічних ΠΊΠΎΠ»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… Ρ€ΡƒΡ…Ρ–Π² Ρ‚Π° кластСрної ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΠΈ Ρƒ Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Ρƒ Π±Ρ–Π»ΠΊΡ–Π² Π· використанням простих Π΄Π²ΠΎΒ­Π²ΠΈΠΌΡ–Ρ€Π½ΠΈΡ… Π³Ρ€Π°Ρ‚ΠΊΠΎΠ²ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΏΠΎΡ€Ρ–Π²Π½ΡΠ»ΡŒΠ½ΠΈΠΉ Π°Π½Π°Π»Ρ–Π· ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Ρ–Π² Π· Ρ–Ρ”Ρ€Π°Ρ€Ρ…Ρ–Ρ‡Π½ΠΎΡŽ Ρ‚Π° Π½Π΅Ρ–ΡΡ€Π°Ρ€Ρ…Ρ–Ρ‡Π½ΠΎΡŽ Π±ΡƒΠ΄ΠΎΠ²ΠΎΡŽ. МодСлюван­ня Π·Π΄Ρ–ΠΉΡΠ½ΡŽΠ²Π°Π»ΠΈ Π·Π° допомогою Ρ‚Ρ€ΡŒΠΎΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π²: стандартного ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ Π· локальним Π½Π°Π±ΠΎΡ€ΠΎΠΌ Ρ€ΡƒΡ…Ρ–Π², стандарт­ного ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π· нСспСцифічними ΠΊΠΎΠ»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌΠΈ обСртаннями Ρ‚Π° кластСрного ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ (CMC) Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ для рСалістичного модСлювання Π΄ΠΈΠ½Π°ΠΌΡ–ΠΊΠΈ кластС­рів. Показано, Ρ‰ΠΎ ΡˆΠ»ΡΡ…ΠΈ Ρ‚Π° ΠΊΡ–Π½Π΅Ρ‚ΠΈΠΊΠ° Ρ–Ρ”Ρ€Π°Ρ€Ρ…Ρ–Ρ‡Π½ΠΎΠ³ΠΎ Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Ρƒ Π½Π΅ ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎ описані Π·Π²ΠΈΡ‡Π°ΠΉΠ½ΠΈΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ. Π£ Ρ†ΡŒΠΎΠΌΡƒ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ врахування кластСрної Π΄ΠΈΠ½Π°ΠΌΡ–ΠΊΠΈ Ρƒ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ– CMC виявляє Π²Π°ΠΆΠ»ΠΈΠ²Ρ– риси Ρ–Ρ”Ρ€Π°Ρ€Ρ…Ρ–Ρ‡Π½ΠΎΠ³ΠΎ Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Ρƒ. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ, up для рСалістичного модСлювання Ρ–Ρ”Ρ€Π°Ρ€Ρ…Ρ–Ρ‡Π½ΠΎΠ³ΠΎ Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Ρƒ ΠΏΠΎΡ‚Ρ€Ρ–Π±Π½ΠΎ використовувати Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΠΎΠ²Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ, які Π²Ρ€Π°Ρ…ΠΎΠ²ΡƒΡŽΡ‚ΡŒ спС­цифічні ΠΊΠΎΠ»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ– Ρ€ΡƒΡ…ΠΈ.ИсслСдована Ρ€ΠΎΠ»ΡŒ спСцифичСских ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ кластСров Π² Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Π΅ Π±Π΅Π»ΠΊΠΎΠ² с использованиСм про­стых Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΒ­ Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Π° ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ² с иСрархичСской ΠΈ нСиСрархичС­ской структурой. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ осущСствляли с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Ρ€Π΅Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ²: стандартного ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ с локаль­ним Π½Π°Π±ΠΎΡ€ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ, стандартного ΠΌΠ΅Ρ‚ΠΎΠ΄Π° с нСспСцифичС­скими ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ вращСниями ΠΈ кластСрного ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ (CMC), ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ для рСали­стичного описания Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ кластСров. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡƒΡ‚ΠΈ ΠΈ ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠ° иСрархичСского Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Π° Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Β­Π½ΠΎ описаны стандартными ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ. Π’ этом случаС ΡƒΡ‡Π΅Ρ‚ кластСрной Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ Π² ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ CMC выявляСт Π²Π°ΠΆΠ½Ρ‹Π΅ осо­бСнности иСрархичСского Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Π°. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ для рСалистичного модСлирования иСрархичСского Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Π° Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ спСцифичСскиС ΠΊΠΎΠ»Π»Π΅ΠΊΒ­Ρ‚ΠΈΠ²Π½Ρ‹Π΅ двиТСния

    Clustering Monte Carlo simulations of the hierarchical protein folding on a simple lattice model

    No full text
    A role of specific collective motions and clustering behavior in protein folding was investigated using simple 2D lattice models. Two model peptides, which have the sequences of hierarchical and non-hierarchical design, were studied comparatively. Simulations were performed using three methods: Metropolis Monte Carlo with the local move set, Metropolis Monte Carlo with unspecific rigid rotations, and the Clustering Monte Carlo (CMC) algorithm that has been recently described by the authors. The latter was developed with particular aim to provide a realistic description of cluster dynamics. We present convincing evidence that the folding pathways and kinetics of hierarchically folding sequence are not adequately described in conventional MC simulations. In this case the account for cluster dynamics provided by CMC algorithm reveals important features of folding of hierarchically organized sequences. Our data suggest that the methods, which enable specific cluster motions, should be used for realistic description of hierarchical folding.ДослідТСно Ρ€ΠΎΠ»ΡŒ спСцифічних ΠΊΠΎΠ»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… Ρ€ΡƒΡ…Ρ–Π² Ρ‚Π° кластСрної ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΠΈ Ρƒ Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Ρƒ Π±Ρ–Π»ΠΊΡ–Π² Π· використанням простих Π΄Π²ΠΎΒ­Π²ΠΈΠΌΡ–Ρ€Π½ΠΈΡ… Π³Ρ€Π°Ρ‚ΠΊΠΎΠ²ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΏΠΎΡ€Ρ–Π²Π½ΡΠ»ΡŒΠ½ΠΈΠΉ Π°Π½Π°Π»Ρ–Π· ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Ρ–Π² Π· Ρ–Ρ”Ρ€Π°Ρ€Ρ…Ρ–Ρ‡Π½ΠΎΡŽ Ρ‚Π° Π½Π΅Ρ–ΡΡ€Π°Ρ€Ρ…Ρ–Ρ‡Π½ΠΎΡŽ Π±ΡƒΠ΄ΠΎΠ²ΠΎΡŽ. МодСлюван­ня Π·Π΄Ρ–ΠΉΡΠ½ΡŽΠ²Π°Π»ΠΈ Π·Π° допомогою Ρ‚Ρ€ΡŒΠΎΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π²: стандартного ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ Π· локальним Π½Π°Π±ΠΎΡ€ΠΎΠΌ Ρ€ΡƒΡ…Ρ–Π², стандарт­ного ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π· нСспСцифічними ΠΊΠΎΠ»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌΠΈ обСртаннями Ρ‚Π° кластСрного ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ (CMC) Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ для рСалістичного модСлювання Π΄ΠΈΠ½Π°ΠΌΡ–ΠΊΠΈ кластС­рів. Показано, Ρ‰ΠΎ ΡˆΠ»ΡΡ…ΠΈ Ρ‚Π° ΠΊΡ–Π½Π΅Ρ‚ΠΈΠΊΠ° Ρ–Ρ”Ρ€Π°Ρ€Ρ…Ρ–Ρ‡Π½ΠΎΠ³ΠΎ Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Ρƒ Π½Π΅ ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎ описані Π·Π²ΠΈΡ‡Π°ΠΉΠ½ΠΈΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ. Π£ Ρ†ΡŒΠΎΠΌΡƒ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ врахування кластСрної Π΄ΠΈΠ½Π°ΠΌΡ–ΠΊΠΈ Ρƒ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ– CMC виявляє Π²Π°ΠΆΠ»ΠΈΠ²Ρ– риси Ρ–Ρ”Ρ€Π°Ρ€Ρ…Ρ–Ρ‡Π½ΠΎΠ³ΠΎ Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Ρƒ. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ, up для рСалістичного модСлювання Ρ–Ρ”Ρ€Π°Ρ€Ρ…Ρ–Ρ‡Π½ΠΎΠ³ΠΎ Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Ρƒ ΠΏΠΎΡ‚Ρ€Ρ–Π±Π½ΠΎ використовувати Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΠΎΠ²Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ, які Π²Ρ€Π°Ρ…ΠΎΠ²ΡƒΡŽΡ‚ΡŒ спС­цифічні ΠΊΠΎΠ»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ– Ρ€ΡƒΡ…ΠΈ.ИсслСдована Ρ€ΠΎΠ»ΡŒ спСцифичСских ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ кластСров Π² Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Π΅ Π±Π΅Π»ΠΊΠΎΠ² с использованиСм про­стых Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΒ­ Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Π° ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ² с иСрархичСской ΠΈ нСиСрархичС­ской структурой. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ осущСствляли с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Ρ€Π΅Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ²: стандартного ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ с локаль­ним Π½Π°Π±ΠΎΡ€ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ, стандартного ΠΌΠ΅Ρ‚ΠΎΠ΄Π° с нСспСцифичС­скими ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ вращСниями ΠΈ кластСрного ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ (CMC), ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ для рСали­стичного описания Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ кластСров. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡƒΡ‚ΠΈ ΠΈ ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠ° иСрархичСского Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Π° Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Β­Π½ΠΎ описаны стандартными ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ. Π’ этом случаС ΡƒΡ‡Π΅Ρ‚ кластСрной Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ Π² ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ CMC выявляСт Π²Π°ΠΆΠ½Ρ‹Π΅ осо­бСнности иСрархичСского Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Π°. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ для рСалистичного модСлирования иСрархичСского Ρ„ΠΎΠ»Π΄ΠΈΠ½Π³Π° Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ спСцифичСскиС ΠΊΠΎΠ»Π»Π΅ΠΊΒ­Ρ‚ΠΈΠ²Π½Ρ‹Π΅ двиТСния

    Fluorescence spectroscopy in polymer science

    No full text
    Polymer science is an interdisciplinary field, combining chemistry, physics, and in some cases biology. Structure, morphology, and dynamical phenomena in natural and synthetic polymers can be addressed using fluorescence spectroscopy. The most attractive aspect of fluorescent reporters is that their fluorescence parameters can give information on the nanometer length scale with an exceptional sensitivity, which allows data acquisition with submicrometer spatial resolution and millisecond time resolution. The use of fluorescent reporter molecules is, in principle, an invasive technique. Because of the large size of polymer molecules, however, small fluorescent reporter molecules of a length scale of < 2 nm can be considered a small perturbation. Because of the enormous importance of synthetic polymers in our technology-based societies, almost every conceivable experimental technique has been applied in this field, but most of these tend to address the sample on a macroscopic scale. This chapter gives illustrative examples of the power of molecular fluorescence for investigating several microscopic aspects of polymer science

    Excited state and ground state proton transfer rates of 3-hydroxyflavone and its derivatives studied by shpol'skii spectroscopy: The influence of redistribution of electron density

    No full text
    We studied the mechanisms of excited-state intramolecular proton transfer (ESIPT) and ground-state back proton transfer (BPT) in 3-hydroxyflavone (3HF) at cryogenic temperatures. The focus was on substituents that change the distribution of electronic density on the chromophore and their influence on these reaction rates. Shpol'skii spectroscopy was applied for comparative studies of three compounds: 3HF, 3-hydroxy-4β€²-methoxyflavone (3HF-4β€²OMe), and 2-furyl-3-hydroxychromone (3HC-F). By comparing the spectral bandwidths with those of deuterated analogues, we could distinguish the lifetime broadening components in the high-resolution excitation and emission spectra, from which the time constants of the ESIPT and BPT reactions were calculated. The time constants for the ESIPT reaction were 0.093 ps for 3HF, 0.21 ps for 3HF-4β€²OMe, and slower than 0.6 ps for 3HC-F. For the same compounds, the BPT rates were 0.21, 0.47, and >2 ps, respectively. No change in bandwidth was observed over the temperature range 4-20 K, in agreement with a tunneling mechanism. Estimates for the barrier heights and proton-transfer distances are given. In addition, a systematic change in O-H bond strengths between ground and excited states was calculated from the isotope effect, observed as the shifts of the 0-0 bands in the excitation and emission spectra upon deuteration, The substantial effect of electron donating substituents on the rates of ESIPT and BPT reactions is in agreement with these changes

    Solvent influence on excited-state intramolecular proton transfer in 3-hydroxychromone derivatives studied by cryogenic high-resolution fluorescence spectroscopy

    No full text
    High-resolution Shpol'skii spectra (recorded at 10 K in n-octane) of 3-hydroxychromone (3HC) substituted at the 2-position with a furan (3HC-F), a benzofuran (3HC-BF) or a naphthofuran group (3HC-NF) are presented. Being close analogues of 3-hydroxyflavone (3HF), these compounds can undergo excited-state intramolecular proton transfer (ESIPT). Luminescence can occur from the normal N* state (blue) or from the tautomeric T* state (green). Whether blue or green emission is observed is strongly dependent on hydrogen-bonding interactions with the environment. For all three chromones studied, high-resolution emission spectra in the green region (T*β†’T) were obtained in pure n-octane, showing four sites with distinct emission bands and detailed vibrational structures, whereas no blue emission was detected. Contrary to the spectra published for 3HF, the emission lines were very narrow (line-broadening effects beyond detection) which implies that the ESIPT rate constants are >1
    corecore